ﻻ يوجد ملخص باللغة العربية
We propose a new approach to the fermion sign problem in systems where there is a coupling $U$ such that when it is infinite the fermions are paired into bosons and there is no fermion permutation sign to worry about. We argue that as $U$ becomes finite fermions are liberated but are naturally confined to regions which we refer to as {em fermion bags}. The fermion sign problem is then confined to these bags and may be solved using the determinantal trick. In the parameter regime where the fermion bags are small and their typical size does not grow with the system size, construction of Monte Carlo methods that are far more efficient than conventional algorithms should be possible. In the region where the fermion bags grow with system size, the fermion bag approach continues to provide an alternative approach to the problem but may lose its main advantage in terms of efficiency. The fermion bag approach also provides new insights and solutions to sign problems. A natural solution to the silver blaze problem also emerges. Using the three dimensional massless lattice Thirring model as an example we introduce the fermion bag approach and demonstrate some of these features. We compute the critical exponents at the quantum phase transition and find $ u=0.87(2)$ and $eta=0.62(2)$.
The fermion bag approach is a new method to tackle fermion sign problems in lattice field theories. Using this approach it is possible to solve a class of sign problems that seem unsolvable by traditional methods. The new solutions emerge when partit
We explore new representations for lattice gauge theories with fermions, where the space-time lattice is divided into dynamically fluctuating regions, inside which different types of degrees of freedom are used in the path integral. The first kind of
We review our results for the simulation of the 2--d lattice Gross--Neveu model in a fermion loop representation. Possible extensions of our techniques to other models and higher dimensions are discussed, as well as the limitations of loop--type representations.
In this contribution we revisit the lattice discretization of the topological charge for abelian lattice field theories. The construction departs from an initially non-compact discretization of the gauge fields and after absorbing $2pi$ shifts of the
In this paper we study the structure of the Hilbert space for the recent noncommutative geometry models of gauge theories. We point out the presence of unphysical degrees of freedom similar to the ones appearing in lattice gauge theories (fermion dou