In this paper we go deep into the connection between duality and fields redefinition for general bilinear models involving the 1-form gauge field $A$. A duality operator is fixed based on gauge embedding procedure. Dual models are shown to fit in equivalence classes of models with same fields redefinitions.
The previously developed renormalizable perturbative 1/N-expansion in higher dimensional scalar field theories is extended to gauge theories with fermions. It is based on the $1/N_f$-expansion and results in a logarithmically divergent perturbation t
heory in arbitrary high odd space-time dimension. Due to the self-interaction of non-Abelian fields the proposed recipe requires some modification which, however, does not change the main results. The new effective coupling is dimensionless and is running in accordance with the usual RG equations. The corresponding beta function is calculated in the leading order and is nonpolynomial in effective coupling. The original dimensionful gauge coupling plays a role of mass and is also logarithmically renormalized. Comments on the unitarity of the resulting theory are given.
The famous equivalence theorem is reexamined in order to make it applicable to the case of intrinsically quantum infinite-component effective theories. We slightly modify the formulation of this theorem and prove it basing on the notion of generating
functional for Green functions. This allows one to trace (directly in terms of graphs) the mutual cancelation of different groups of contributions.
We discuss the equivalence of two dual scalar field theories in 2 dimensions. The models are derived though the elimination of different fields in the same Freedman--Townsend model. It is shown that tree $S$-matrices of these models do not coincide.
The 2-loop counterterms are calculated. It turns out that while one of these models is single-charged, the other theory is multi-charged. Thus the dual models considered are non-equivalent on classical and quantum levels. It indicates the possibility of the anomaly leading to non-equivalence of dual models.
Pure gauge theories for de Sitter, anti de Sitter and orthogonal groups, in four-dimensional Euclidean spacetime, are studied. It is shown that, if the theory is asymptotically free and a dynamical mass is generated, then an effective geometry may be induced and a gravity theory emerges.
We classify the weakly interacting fixed points of general gauge theories coupled to matter and explain how the competition between gauge and matter fluctuations gives rise to a rich spectrum of high- and low-energy fixed points. The pivotal role pla
yed by Yukawa couplings is emphasized. Necessary and sufficient conditions for asymptotic safety of gauge theories are also derived, in conjunction with strict no go theorems. Implications for phase diagrams of gauge theories and physics beyond the Standard Model are indicated.