ﻻ يوجد ملخص باللغة العربية
The previously developed renormalizable perturbative 1/N-expansion in higher dimensional scalar field theories is extended to gauge theories with fermions. It is based on the $1/N_f$-expansion and results in a logarithmically divergent perturbation theory in arbitrary high odd space-time dimension. Due to the self-interaction of non-Abelian fields the proposed recipe requires some modification which, however, does not change the main results. The new effective coupling is dimensionless and is running in accordance with the usual RG equations. The corresponding beta function is calculated in the leading order and is nonpolynomial in effective coupling. The original dimensionful gauge coupling plays a role of mass and is also logarithmically renormalized. Comments on the unitarity of the resulting theory are given.
We demonstrate how one can construct renormalizable perturbative expansion in formally nonrenormalizable higher dimensional scalar theories. It is based on 1/N-expansion and results in a logarithmically divergent perturbation theory in arbitrary high
We demonstrate how one can construct renormalizable perturbative expansion in formally nonrenormalizable higher dimensional field theories. It is based on $1/N_f$-expansion and results in a logarithmically divergent perturbation theory in arbitrary h
We discuss a natural scenario to solve the strong CP problem in the framework of the higher dimensional gauge theory. An axion-like field $A_y$ has been built-in as the extra-space component of the higher dimensional gauge field. The coupling of $A_y
Some nonrenormalizable theories are less singular than all renormalizable theories, and one can use lattice simulations to extract physical information from them. This paper discusses four nonrenormalizable theories that have finite euclidian and min
We show that the subleading soft photon theorem in a $(d+2)$-dimensional massless abelian gauge theory gives rise to a Ward identity corresponding to divergent large gauge transformations acting on the celestial sphere at null infinity. We further ge