ﻻ يوجد ملخص باللغة العربية
The gluonic field created by a static quark anti-quark pair is described via the AdS/CFT correspondence by a string connecting the pair which is located on the boundary of AdS. Thus the gluonic field in a strongly coupled large N CFT has a stringy spectrum of excitations. We trace the stability of these excitations to a combination of large N suppressions and energy conservation. Comparison of the physics of the N=infinity flux tube in the {cal N}=4 SYM theory at weak and strong coupling shows that the excitations are present only above a certain critical coupling. The density of states of a highly excited string with a fold reaching towards the horizon of AdS is in exact agreement at strong coupling with that of the near-threshold states found in a ladder diagram model of the weak-strong coupling transition. We also study large distance correlations of local operators with a Wilson loop, and show that the fall off at weak coupling and N=infinity (i.e. strictly planar diagrams) matches the strong coupling predictions given by the AdS/CFT correspondence, rather than those of a weakly coupled U(1) gauge theory.
In this work we explore the possibility of spontaneous breaking of global symmetries at all nonzero temperatures for conformal field theories (CFTs) in $D = 4$ space-time dimensions. We show that such a symmetry-breaking indeed occurs in certain fami
This is a brief introductory review of the AdS/CFT correspondence and of the ideas that led to its formulation. Emphasis is placed on dualities between conformal large $N$ gauge theories in 4 dimensions and string backgrounds of the form $AdS_5times
Considering marginally relevant and relevant deformations of the weakly coupled $(3+1)$-dimensional large $N$ conformal gauge theories introduced in arXiv:2011.13981, we study the patterns of phase transitions in these systems that lead to a symmetry
We study in detail various information theoretic quantities with the intent of distinguishing between different charged sectors in fractionalized states of large-$N$ gauge theories. For concreteness, we focus on a simple holographic $(2+1)$-dimension
We derive exact formulae for the partition function and the expectation values of Wilson/t Hooft loops, thus directly checking their S-duality transformations. We focus on a special class of N=2 gauge theories on S^4 with fundamental matter. In parti