ﻻ يوجد ملخص باللغة العربية
We solve for the cosmological perturbations in a five-dimensional background consisting of two separating or colliding boundary branes, as an expansion in the collision speed V divided by the speed of light c. Our solution permits a detailed check of the validity of four-dimensional effective theory in the vicinity of the event corresponding to the big crunch/big bang singularity. We show that the four-dimensional description fails at the first nontrivial order in (V/c)^2. At this order, there is nontrivial mixing of the two relevant four-dimensional perturbation modes (the growing and decaying modes) as the boundary branes move from the narrowly-separated limit described by Kaluza-Klein theory to the well-separated limit where gravity is confined to the positive-tension brane. We comment on the cosmological significance of the result and compute other quantities of interest in five-dimensional cosmological scenarios.
In a recent series of papers, we have shown that theories with scalar fields coupled to gravity (e.g., the standard model) can be lifted to a Weyl-invariant equivalent theory in which it is possible to unambiguously trace the classical cosmological e
We point out a new phenomenon which seems to be generic in 4d effective theories of scalar fields coupled to Einstein gravity, when applied to cosmology. A lift of such theories to a Weyl-invariant extension allows one to define classical evolution t
We discuss general features of the $beta$-function equations for spatially flat, $(d+1)$-dimensional cosmological backgrounds at lowest order in the string-loop expansion, but to all orders in $alpha$. In the special case of constant curvature and a
In string theory, the traditional picture of a Universe that emerges from the inflation of a very small and highly curved space-time patch is a possibility, not a necessity: quite different initial conditions are possible, and not necessarily unlikel
Exact analytic solutions for a class of scalar-tensor gravity theories with a hyperbolic scalar potential are presented. Using an exact solution we have successfully constructed a model of inflation that produces the spectral index, the running of th