ﻻ يوجد ملخص باللغة العربية
Exact analytic solutions for a class of scalar-tensor gravity theories with a hyperbolic scalar potential are presented. Using an exact solution we have successfully constructed a model of inflation that produces the spectral index, the running of the spectral index and the amplitude of scalar perturbations within the constraints given by the WMAP 7 years data. The model simultaneously describes the Big Bang and inflation connected by a specific time delay between them so that these two events are regarded as dependent on each other. In solving the Fridemann equations, we have utilized an essential Weyl symmetry of our theory in 3+1 dimensions which is a predicted remaining symmetry of 2T-physics field theory in 4+2 dimensions. This led to a new method of obtaining analytic solutions in 1T field theory which could in principle be used to solve more complicated theories with more scalar fields. Some additional distinguishing properties of the solution includes the fact that there are early periods of time when the slow roll approximation is not valid. Furthermore, the inflaton does not decrease monotonically with time, rather it oscillates around the potential minimum while settling down, unlike the slow roll approximation. While the model we used for illustration purposes is realistic in most respects, it lacks a mechanism for stopping inflation. The technique of obtaining analytic solutions opens a new window for studying inflation, and other applications, more precisely than using approximations.
The large-$N$ master field of the Lorentzian IIB matrix model can, in principle, give rise to a particular degenerate metric relevant to a regularized big bang. The length parameter of this degenerate metric is then calculated in terms of the IIB-matrix-model length scale.
We solve for the cosmological perturbations in a five-dimensional background consisting of two separating or colliding boundary branes, as an expansion in the collision speed V divided by the speed of light c. Our solution permits a detailed check of
We discuss general features of the $beta$-function equations for spatially flat, $(d+1)$-dimensional cosmological backgrounds at lowest order in the string-loop expansion, but to all orders in $alpha$. In the special case of constant curvature and a
Several scenarios have been proposed in which primordial perturbations could originate from quantum vacuum fluctuations in a phase corresponding to a collapse phase (in an Einstein frame) preceding the Big Bang. I briefly review three models which co
We construct an analytic solution for a one-parameter family of holographic superconductors in asymptotically Lifshitz spacetimes. We utilize this solution to explore various properties of the systems such as (1) the superfluid phase background and t