ترغب بنشر مسار تعليمي؟ اضغط هنا

Things Fall Apart: Topology Change from Winding Tachyons

112   0   0.0 ( 0 )
 نشر من قبل John McGreevy
 تاريخ النشر 2005
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We argue that closed string tachyons drive two spacetime topology changing transitions -- loss of genus in a Riemann surface and separation of a Riemann surface into two components. The tachyons of interest are localiz



قيم البحث

اقرأ أيضاً

T-duality acts on circle bundles by exchanging the first Chern class with the fiberwise integral of the H-flux, as we motivate using E_8 and also using S-duality. We present known and new examples including NS5-branes, nilmanifolds, Lens spaces, both circle bundles over RP^n, and the AdS^5 x S^5 to AdS^5 x CP^2 x S^1 with background H-flux of Duff, Lu and Pope. When T-duality leads to M-theory on a non-spin manifold the gravitino partition function continues to exist due to the background flux, however the known quantization condition for G_4 fails. In a more general context, we use correspondence spaces to implement isomorphisms on the twisted K-theories and twisted cohomology theories and to study the corresponding Grothendieck-Riemann-Roch theorem. Interestingly, in the case of decomposable twists, both twisted theories admit fusion products and so are naturally rings.
We show how changes in unitarity-preserving boundary conditions allow continuous interpolation among the Hilbert spaces of quantum mechanics on topologically distinct manifolds. We present several examples, including a computation of entanglement ent ropy production. We discuss approximate realization of boundary conditions through appropriate interactions, thus suggesting a route to possible experimental realization. We give a theoretical application to quantization of singular Hamiltonians, and give tangible form to the many worlds interpretation of wave functions.
We provide an explicit solution representing an anisotropic power law inflation within the framework of rolling tachyon model. This is generated by allowing a non-minimal coupling between the tachyon and the world-volume gauge field on non-BPS D3 bra ne. We also show that this solution is perturbatively stable.
66 - Linhu Li , Sen Mu , Ching Hua Lee 2020
Topologically quantized response is one of the focal points of contemporary condensed matter physics. While it directly results in quantized response coefficients in quantum systems, there has been no notion of quantized response in classical systems thus far. This is because quantized response has always been connected to topology via linear response theory that assumes a quantum mechanical ground state. Yet, classical systems can carry arbitrarily amounts of energy in each mode, even while possessing the same number of measurable edge modes as their topological winding. In this work, we discover the totally new paradigm of quantized classical response, which is based on the spectral winding number in the complex spectral plane, rather than the winding of eigenstates in momentum space. Such quantized response is classical insofar as it applies to phenomenological non-Hermitian setting, arises from fundamental mathematical properties of the Greens function, and shows up in steady-state response, without invoking a conventional linear response theory. Specifically, the ratio of the change in one quantity depicting signal amplification to the variation in one imaginary flux-like parameter is found to display fascinating plateaus, with their quantized values given by the spectral winding numbers as the topological invariants.
The smooth topology change of Berrys phase from a Dirac monopole-like configuration to a dipole configuration, when one approaches the monopole position in the parameter space, is analyzed in an exactly solvable model. A novel aspect of Berrys connec tion ${cal A}_{k}$ is that the geometrical center of the monopole-like configuration and the origin of the Dirac string are displaced in the parameter space. Gauss theorem $int_{S}( ablatimes {cal A})cdot dvec{S}=int_{V} ablacdot ( ablatimes {cal A}) dV=0$ for a volume $V$ which is free of singularities shows that a combination of the monopole-like configuration and the Dirac string is effectively a dipole. The smooth topology change from a dipole to a monopole with a quantized magnetic charge $e_{M}=2pihbar$ takes place when one regards the Dirac string as unobservable if it satisfies the Wu-Yang gauge invariance condition. In the transitional region from a dipole to a monopole, a half-monopole appears with an observable Dirac string, which is analogous to the Aharonov-Bohm phase of an electron for the magnetic flux generated by the Cooper pair condensation. The main topological features of an exactly solvable model are shown to be supported by a generic model of Berrys phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا