ﻻ يوجد ملخص باللغة العربية
The smooth topology change of Berrys phase from a Dirac monopole-like configuration to a dipole configuration, when one approaches the monopole position in the parameter space, is analyzed in an exactly solvable model. A novel aspect of Berrys connection ${cal A}_{k}$ is that the geometrical center of the monopole-like configuration and the origin of the Dirac string are displaced in the parameter space. Gauss theorem $int_{S}( ablatimes {cal A})cdot dvec{S}=int_{V} ablacdot ( ablatimes {cal A}) dV=0$ for a volume $V$ which is free of singularities shows that a combination of the monopole-like configuration and the Dirac string is effectively a dipole. The smooth topology change from a dipole to a monopole with a quantized magnetic charge $e_{M}=2pihbar$ takes place when one regards the Dirac string as unobservable if it satisfies the Wu-Yang gauge invariance condition. In the transitional region from a dipole to a monopole, a half-monopole appears with an observable Dirac string, which is analogous to the Aharonov-Bohm phase of an electron for the magnetic flux generated by the Cooper pair condensation. The main topological features of an exactly solvable model are shown to be supported by a generic model of Berrys phase.
A new static and azimuthally symmetric magnetic monopolelike object, which looks like a Dirac monopole when seen from far away but smoothly changes to a dipole near the monopole position and vanishes at the origin, is discussed. This monopolelike obj
Berrys phase, which is associated with the slow cyclic motion with a finite period, looks like a Dirac monopole when seen from far away but smoothly changes to a dipole near the level crossing point in the parameter space in an exactly solvable model
The monopole-like singularity of Berrys adiabatic phase in momentum space and associated anomalous Poisson brackets have been recently discussed in various fields. With the help of the results of an exactly solvable version of Berrys model, we show t
We show how changes in unitarity-preserving boundary conditions allow continuous interpolation among the Hilbert spaces of quantum mechanics on topologically distinct manifolds. We present several examples, including a computation of entanglement ent
T-duality acts on circle bundles by exchanging the first Chern class with the fiberwise integral of the H-flux, as we motivate using E_8 and also using S-duality. We present known and new examples including NS5-branes, nilmanifolds, Lens spaces, both