ﻻ يوجد ملخص باللغة العربية
Assuming gauge-mediated supersymmetry breaking, we simulate precision measurements of fundamental parameters at a 500 GeV e+e- linear collider in the scenario where a neutralino is the next-to-lightest supersymmetric particle. Information on the supersymmetry breaking and the messenger sectors of the theory is extracted from realistic fits to the measured mass spectrum of the Minimal Supersymmetric Model particles and the next-to-lightest supersymmetric particle lifetime.
We performed an analysis on the detection of a long-lived slepton at a linear collider with $sqrt{s}=500$ GeV. In GMSB models a long-lived NLSP is predicted for large value of the supersymmetry breaking scale $sqrt{F}$. Furthermore in a large portion
We consider the phenomenology of a class of gauge-mediated supersymmetry (SUSY) breaking (GMSB) models at a e+e- Linear Collider (LC) with c.o.m. energy up to 500 GeV. In particular, we refer to a high-luminosity (L ~ 3 x 10^34 cm^-2 s^-1) machine, a
Interest in highly-compressed electron beams has been increasing in recent times, driven by the study of non-linear and even non-perturbative aspects of QED [2]. The FACET-II [7] facility at SLAC is currently (at the time of writing) being constructe
This report summarizes the progress in the study of Higgs physics at a future linear electron positron collider at center-of-mass energies up to about 1000 GeV and high luminosity. After the publication of the TESLA Technical Design Report, an extend
We consider the production of singly charged Higgs bosons in the Higgs triplet and two Higgs doublet models. We evaluate the cross sections for the pair production and the single production of charged higgses at linear collider. The decay modes of $H