ﻻ يوجد ملخص باللغة العربية
Interest in highly-compressed electron beams has been increasing in recent times, driven by the study of non-linear and even non-perturbative aspects of QED [2]. The FACET-II [7] facility at SLAC is currently (at the time of writing) being constructed and has been predicted to be able to deliver unprecedented peak beam intensities (>200 kA). We consider here what might be possible in pushing the bunch length compression to its limits at a future Linear Collider facility based on experience at FACET and ongoing photo-injector designs. We present an alternative electron-electron collision parameter table for ILC and CLIC colliders in which low charge, round beams with very short (<100nm) bunches are collided. The parameters shown present the possiblility to provide identical luminosities to the existing designs but with lower rf power requirements and/or with improved luminosity quality (fraction of luminosity close to energy peak). Achieving these beam parameters requires further R&D on the bunch compression and beam delivery systems associated with the Linear Colliders, which is discussed.
Assuming gauge-mediated supersymmetry breaking, we simulate precision measurements of fundamental parameters at a 500 GeV e+e- linear collider in the scenario where a neutralino is the next-to-lightest supersymmetric particle. Information on the supe
The two main functions of the NLC extraction line include: 1) transmission of the outgoing disrupted beam and secondary particles to the dump with minimal losses; and 2) beam diagnostics and control. In this report, we describe the extraction line op
The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^-$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, an
The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^-$ collider under development by international collaborations hosted by CERN. This document provides an overview of the design, technology, and implementation aspects of t
A possible solution to realize a conventional positron source driven by a several-GeV electron beam for the International Linear Collider is proposed. A 300 Hz electron linac is employed to create positrons with stretching pulse length in order to cu