ﻻ يوجد ملخص باللغة العربية
We calculate the ratio of proton and neutron yields in NC induced neutrino(antineutrino)-nucleus inelastic scattering at neutrino energies of about 1 GeV. We show that this ratio depends very weakly on the nuclear models employed and that in the neutrino and antineutrino cases the ratios have different sensitivity to the axial and vector strange form factors; moreover, the ratio of antineutrino--nucleus cross sections turns out to be rather sensitive to the electric strange form factor. We demonstrate that measurements of these ratios will allow to get information on the strange form factors of the nucleon in the region Q > 0.4 GeV^2.
Possibilities to extract information on the strange form factors of the nucleon from neutrino (antineutrino) inelastic scattering on nuclei, in an energy range from 200 MeV to 1 GeV and more, are investigated in detail. All calculations are performed
The study of electromagnetic and weak form factors of nucleon (charged quasielastic scatterings of neutrino (antineutrino) and nucleon) done in $70^prime s$ and published in Chinese journals is reviewed. In the approach of the study antiquark compone
The charged-current double differential neutrino cross section, measured by the MiniBooNE Collaboration, has been analyzed using a microscopical model that accounts for, among other nuclear effects, long range nuclear (RPA) correlations and multinucl
To obtain further information on the geometric shape of the nucleon, the proton charge form factor is decomposed into two terms, which are connected respectively with a spherically symmetric and an intrinsic quadrupole part of the protons charge dens
The role of the strange quarks on the low-energy interactions of the proton can be probed through the strange electromagnetic form factors. Knowledge of these form factors provides essential input for parity-violating processes and contributes to the