ﻻ يوجد ملخص باللغة العربية
To obtain further information on the geometric shape of the nucleon, the proton charge form factor is decomposed into two terms, which are connected respectively with a spherically symmetric and an intrinsic quadrupole part of the protons charge density. Quark model relations are employed to derive expressions for both terms. In particular, the protons intrinsic quadrupole form factor is obtained from a relation between the N -> Delta and neutron charge form factors. The proposed decomposition shows that the neutron charge form factor is an observable manifestation of an intrinsic quadrupole form factor of the nucleon. Furthermore, it affords an interpretation of recent electron-nucleon scattering data in terms of a nonspherical distribution of quark-antiquark pairs in the nucleon.
The nucleon strange vector and isoscalar electromagnetic form factors are studied using a spectral decomposition. The Kbar{K} contribution to the electric and magnetic radii as well as the magnetic moment is evaluated to all orders in the strong inte
By the analysis of the world data base of elastic electron scattering on the proton and the neutron (for the latter, in fact, on $^2H$ and $^3He$) important experimental insights have recently been gained into the flavor compositions of nucleon elect
A quark model relation between the neutron charge form factor and the N->Delta charge quadrupole form factor is used to predict the C2/M1 ratio in the N->Delta transition from the elastic neutron form factor data. Excellent agreement with the electro
A group theoretical derivation of a relation between the N --> Delta charge quadrupole transition and neutron charge form factors is presented.
We study the electromagnetic structure of the nucleon within a hybrid constituent-quark model that comprises, in addition to the $3q$ valence component, also a $3q$+$pi$ non-valence component. To this aim we employ a Poincare-invariant multichannel f