ﻻ يوجد ملخص باللغة العربية
We propose to use Fermi-Dirac distributions for quark and antiquark partons. It allows a fair description of the $x$-dependence of the very recent NMC data on the proton and neutron structure functions $F_2^p(x)$ and $F_2^n(x)$ at $Q^2=4$ GeV$^2$, as well as the CCFR antiquark distribution $xoverline q(x)$. We show that one can also use a corresponding Bose-Einstein expression to describe consistently the gluon distribution. The Pauli exclusion principle, which has been identified to explain the flavor asymmetry of the light-quark sea of the proton, is advocated to guide us for making a simple construction of the polarized parton distributions. We predict the spin dependent structure functions $g_1^p(x)$ and $g_1^n(x)$ in good agreement with EMC and SLAC data. The quark distributions involve some parameters whose values support well the hypothesis that the violation of the quark parton model sum rules is a consequence of the Pauli principle.
We describe the architecture and functionalities of a C++ software framework, coined PARTONS, dedicated to the phenomenology of Generalized Parton Distributions. These distributions describe the three-dimensional structure of hadrons in terms of quar
The concept of parton fragmentation in QCD hard scattering phenomenology as well as NLO pQCD analysis of fragmentation functions are outlined. Hadroproduction of pions of a few GeV pT is discussed through the example of recent measurements at sqrt{S_{RHIC}}=200 GeV.
We calculate twist-3 parton ditribution functions (PDFs) using cut and uncut diagrams. Uncut diagrams lead to a Dirac delta function term. No such term appears when cut diagrams are used. We show that a $delta(x)$ is necessary to satisfy the Lorentz
A light-front renormalization group analysis is applied to study matter which falls into massive black holes, and the related problem of matter with transplankian energies. One finds that the rate of matter spreading over the black holes horizon unex
We investigate quark Wigner distributions in a light-cone spectator model. Both the scalar and the axial-vector spectators are included. The light-cone wave functions are derived from effective quark-spectator-nucleon vertex and then generalized by a