ﻻ يوجد ملخص باللغة العربية
We investigate quark Wigner distributions in a light-cone spectator model. Both the scalar and the axial-vector spectators are included. The light-cone wave functions are derived from effective quark-spectator-nucleon vertex and then generalized by adjusting the power of energy denominators. The gauge link is taken into account by introducing relative phases to the light-cone amplitudes, and the phases are estimated from one gluon exchange interactions. The mixing distributions, which describe the correlation between transverse coordinate and transverse momentum and represent quark orbital motions, are calculated from the Wigner distributions. We find both $u$ quark and $d$ quark have positive orbital angular momentum in a polarized proton at small $x$ region, but a sign change is observed at large $x$ region for the $d$ quark. Besides, some model relations between Wigner distributions with different polarization configurations are found.
We investigate the Wigner distributions for $u$ and $d$ quarks in a light-front quark-diquark model of a proton to unravel the spatial and spin structure. The light-front wave functions are modeled from the soft-wall AdS/QCD prediction. We consider t
We investigate the quark Wigner distributions in a light-cone spectator model. The Wigner distribution, as a quasi-distribution function, provides the most general one-parton information in a hadron. Combining the polarization configurations, unpolar
We study the Wigner distributions of the pion using a holographic light-front pion wavefunction with dynamical spin effects to reveal its multidimensional structure.
We study a generalization of the Wigner function to arbitrary tuples of hermitian operators. We show that for any collection of hermitian operators A1...An , and any quantum state there is a unique joint distribution on R^n, with the property that th
We perform a one-loop study of the small-$z_3^2$ behavior of the Ioffe-time distribution (ITD) ${cal M} ( u, z_3^2)$, the basic function that may be converted into parton pseudo- and quasi-distributions. We calculate the corrections at the operator l