ﻻ يوجد ملخص باللغة العربية
We consider transformations of the $2times2$ propagator matrix in real-time finite-temperature field theory, resulting in transformed $n$--point functions. As special cases of such a transformation we examine the Keldysh basis, the retarded/advanced $RA$ basis, and a Feynman-like $Fbar F$ basis, which differ in this context as to how ``economically certain constraints on the original propagator matrix elements are implemented. We also obtain the relation between some of these real-time functions and certain analytic continuations of the imaginary-time functions. Finally, we compare some aspects of these bases which arise in practical calculations.
We show that the Mellin summation technique (MST) is a well defined and useful tool to compute loop integrals at finite temperature in the imaginary-time formulation of thermal field theory, especially when interested in the infrared limit of such in
The method of QCD sum rules at finite temperature is reviewed, with emphasis on recent results. These include predictions for the survival of charmonium and bottonium states, at and beyond the critical temperature for de-confinement, as later confirm
We present a simple derivation of the Hellmann-Feynman theorem at finite temperature. We illustrate its validity by considering three relevant examples which can be used in quantum mechanics lectures: the one-dimensional harmonic oscillator, the one-
Leptoquarks (LQs) have attracted increasing attention within recent years, mainly since they can explain the flavor anomalies found in $R(D^{(*)})$, $b rightarrow s ell^+ ell^-$ transitions and the anomalous magnetic moment of the muon. In this artic
We present simple diagrammatic rules to write down Euclidean n-point functions at finite temperature directly in terms of 3-dimensional momentum integrals, without ever performing a single Matsubara sum. The rules can be understood as describing the