ﻻ يوجد ملخص باللغة العربية
We show that the Mellin summation technique (MST) is a well defined and useful tool to compute loop integrals at finite temperature in the imaginary-time formulation of thermal field theory, especially when interested in the infrared limit of such integrals. The method makes use of the Feynman parametrization which has been claimed to have problems when the analytical continuation from discrete to arbitrary complex values of the Matsubara frequency is performed. We show that without the use of the MST, such problems are not intrinsic to the Feynman parametrization but instead, they arise as a result of (a) not implementing the periodicity brought about by the possible values taken by the discrete Matsubara frequencies before the analytical continuation is made and (b) to the changing of the original domain of the Feynman parameter integration, which seemingly simplifies the expression but in practice introduces a spurious endpoint singularity. Using the MST, there are no problems related to the implementation of the periodicity but instead, care has to be taken when the sum of denominators of the original amplitude vanishes. We apply the method to the computation of loop integrals appearing when the effects of external weak magnetic fields on the propagation of scalar particles is considered.
We demonstrate the applicability of integration-by-parts (IBP) identities in finite-temperature field theory. As a concrete example, we perform 3-loop computations for the thermodynamic pressure of QCD in general covariant gauges, and confirm earlier Feynman-gauge results.
We present a simple derivation of the Hellmann-Feynman theorem at finite temperature. We illustrate its validity by considering three relevant examples which can be used in quantum mechanics lectures: the one-dimensional harmonic oscillator, the one-
We present a new gauge fixing condition for the Weinberg-Salam electro-weak theory at finite temperature and density. After spontaneous symmetry breaking occurs, every unphysical term in the Lagrangian is eliminated with our gauge fixing condition.
Dynamical symmetry breaking in three-dimensional QED with N fermion flavours is considered at finite temperature, in the large $N$ approximation. Using an approximate treatment of the Schwinger-Dyson equation for the fermion self-energy, we find that
We consider transformations of the $2times2$ propagator matrix in real-time finite-temperature field theory, resulting in transformed $n$--point functions. As special cases of such a transformation we examine the Keldysh basis, the retarded/advanced