ﻻ يوجد ملخص باللغة العربية
Having in mind present uncertainty of the experimental situation in respect to exotic hadrons, it is important to discuss any possible theoretical arguments, pro and contra. Up to now, there are no theoretical ideas which could forbid existence of the exotic states. Theoretical proofs for their existence are also absent. However, there are some indirect arguments for the latter case. It will be shown here, by using the complex angular momenta approach, that the standard assumptions of analyticity and unitarity for hadronic amplitudes lead to a non-trivial conclusion: the S-matrix has infinitely many poles in the energy plane (accounting for all its Riemann sheets). This is true for any arbitrary quantum numbers of the poles, exotic or non-exotic. Whether some of the poles may provide physical (stable or resonance) states, should be determined by some more detailed dynamics.
We report a complete calculation of the quark and glue momenta and angular momenta in the proton. These include the quark contributions from both the connected and disconnected insertions. The calculation is carried out on a $16^3 times 24$ quenched
One intriguing issue in the nucleon spin decomposition problem is the existence of two types of decompositions, which are representably characterized by two different orbital angular momenta (OAMs) of quarks. The one is the manifestly gauge-invariant
We report a complete calculation of the quark and glue momenta and angular momenta in the proton. These include the quark contributions from both the connected and disconnected insertions. The quark disconnected insertion loops are computed with $Z_4
Many charmonium-like and bottomonium-like $XYZ$ resonances have been observed by the Belle, Babar, CLEO and BESIII collaborations in the past decade. They are difficult to fit in the conventional quark model and thus are considered as candidates of e
It is analyzed the quantum mechanical scattering off a topological defect (such as a Dirac monopole) as well as a Yukawa-like potential(s) representing the typical effects of strong interactions. This system, due to the presence of a short-range pote