ﻻ يوجد ملخص باللغة العربية
We report a complete calculation of the quark and glue momenta and angular momenta in the proton. These include the quark contributions from both the connected and disconnected insertions. The quark disconnected insertion loops are computed with $Z_4$ noise, and the signal-to-noise is improved with unbiased subtractions. The glue operator is comprised of gauge-field tensors constructed from the overlap operator. The calculation is carried out on a $16^3 times 24$ quenched lattice at $beta = 6.0$ for Wilson fermions with $kappa=0.154, 0.155$, and $0.1555$ which correspond to pion masses at $650, 538$, and $478$~MeV, respectively. The chirally extrapolated $u$ and $d$ quark momentum/angular momentum fraction is found to be $0.64(5)/0.70(5)$, the strange momentum/angular momentum fraction is $0.024(6)/0.023(7)$, and that of the glue is $0.33(6)/0.28(8)$. The previous study of quark spin on the same lattice revealed that it carries a fraction of $0.25(12)$ of proton spin. The orbital angular momenta of the quarks are then obtained from subtracting the spin from their corresponding angular momentum components. We find that the quark orbital angular momentum constitutes $0.47(13)$ of the proton spin with almost all of it coming from the disconnected insertions.
We report a complete calculation of the quark and glue momenta and angular momenta in the proton. These include the quark contributions from both the connected and disconnected insertions. The calculation is carried out on a $16^3 times 24$ quenched
By introducing an additional operator into the action and using the Feynman-Hellmann theorem we describe a method to determine both the quark line connected and disconnected terms of matrix elements. As an illustration of the method we calculate the
A Poincare-covariant quark+diquark Faddeev equation is used to compute nucleon elastic form factors on $0leq Q^2leq 18 ,m_N^2$ ($m_N$ is the nucleon mass) and elucidate their role as probes of emergent hadronic mass in the Standard Model. The calcula
We study the strangeness contribution to nucleon matrix elements using Nf=2+1 dynamical clover fermion configurations generated by the CP-PACS/JLQCD collaboration. In order to evaluate the disconnected insertion (DI), we use the Z(4) stochastic metho
The adoption of two distinct boundary conditions for two fermions species on a finite lattice allows to deal with arbitrary relative momentum between the two particle species, in spite of the momentum quantization rule due to a limited physical box s