ﻻ يوجد ملخص باللغة العربية
We present a calculation of the $Ktopipi$ decay amplitudes from the $Ktopi$ matrix elements using leading order relations derived in chiral perturbation theory. Numerical simulations are carried out in quenched QCD with the domain-wall fermion action and the renormalization group improved gluon action. Our results show that the I=2 amplitude is reasonably consistent with experiment whereas the I=0 amplitude is sizably smaller. Consequently the $Delta I=1/2$ enhancement is only half of the experimental value, and $epsilon/epsilon$ is negative.
We explore application of the domain wall fermion formalism of lattice QCD to calculate the $Ktopipi$ decay amplitudes in terms of the $Ktopi$ and $Kto 0$ hadronic matrix elements through relations derived in chiral perturbation theory. Numerical sim
We report on the nucleon decay matrix elements with domain-wall fermions in quenched approximation. Results from direct and indirect method are compared with a focus on the process of a proton decaying to a pion and a lepton. We discuss the renormali
Hadronic matrix elements of operators relevant to nucleon decay in grand unified theories are calculated numerically using lattice QCD. In this context, the domain-wall fermion formulation, combined with non-perturbative renormalization, is used for
We present a lattice QCD calculation of the parameters alpha and beta which are necessary in the theoretical estimation of the proton lifetime in grand unified theories (GUTs) using chiral lagrangian approach. The simulation is carried out using the
We report on a calculation of $B_K$ with domain wall fermion action in quenched QCD. Simulations are made with a renormalization group improved gauge action at $beta=2.6$ and 2.9 corresponding to $a^{-1}approx 2$GeV and 3GeV. Effects due to finite fi