ترغب بنشر مسار تعليمي؟ اضغط هنا

Kaon B parameter from quenched domain-wall QCD

82   0   0.0 ( 0 )
 نشر من قبل Yusuke Taniguchi
 تاريخ النشر 2001
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on a calculation of $B_K$ with domain wall fermion action in quenched QCD. Simulations are made with a renormalization group improved gauge action at $beta=2.6$ and 2.9 corresponding to $a^{-1}approx 2$GeV and 3GeV. Effects due to finite fifth dimensional size $N_5$ and finite spatial size $N_sigma$ are examined in detail. Matching to the continuum operator is made perturbatively at one loop order. We obtain $B_K(mu = 2 GeV)= 0.5746(61)(191)$, where the first error is statistical and the second error represents an estimate of scaling violation and ${cal O}(alpha^2)$ errors in the renormalization factor added in quadrature, as an estimate of the continuum value in the $msbar$ scheme with naive dimensional regularization. This value is consistent, albeit somewhat small, with $B_K(mu = 2 {GeV})= 0.628(42)$ obtained by the JLQCD Collaboration using the Kogut-Susskind quark action. Results for light quark masses are also reported.



قيم البحث

اقرأ أيضاً

We present a study of $B$-parameters for generic $Delta S=2$ four-quark operators in domain wall QCD. Our calculation covers all the $B$-parameters required to study the neutral kaon mixing in the standard model (SM) and beyond it. We evaluate one-lo op renormalization factors of the operators employing the plaquette and Iwasaki gauge actions. Numerical simulations are carried out in quenched QCD with both gauge actions on $16^3times 32times 16$ and $24^3times 32times 16$ at the lattice spacing $1/aapprox 2$GeV. We investigate the relative magnitudes of the non-SM $B$-parameters to the SM one, which are compared with the previous results obtained with the overlap and the clover quark actions.
We explore application of the domain wall fermion formalism of lattice QCD to calculate the $Ktopipi$ decay amplitudes in terms of the $Ktopi$ and $Kto 0$ hadronic matrix elements through relations derived in chiral perturbation theory. Numerical sim ulations are carried out in quenched QCD using domain-wall fermion action for quarks and an RG-improved gauge action for gluons on a $16^3times 32times 16$ and $24^3times 32times 16$ lattice at $beta=2.6$ corresponding to the lattice spacing $1/aapprox 2$GeV. Quark loop contractions which appear in Penguin diagrams are calculated by the random noise method, and the $Delta I=1/2$ matrix elements which require subtractions with the quark loop contractions are obtained with a statistical accuracy of about 10%. We confirm the chiral properties required of the $Ktopi$ matrix elements. Matching the lattice matrix elements to those in the continuum at $mu=1/a$ using the perturbative renormalization factor to one loop order, and running to the scale $mu=m_c=1.3$ GeV with the renormalization group for $N_f=3$ flavors, we calculate all the matrix elements needed for the decay amplitudes. With these matrix elements, the $Delta I=3/2$ decay amplitude shows a good agreement with experiment in the chiral limit. The $Delta I=1/2$ amplitude, on the other hand, is about 50--60% of the experimental one even after chiral extrapolation. In view ofthe insufficient enhancement of the $Delta I=1/2$ contribution, we employ the experimental values for the real parts of the decay amplitudes in our calculation of $epsilon/epsilon$. We find that the $Delta I=3/2$ contribution is larger than the $Delta I=1/2$ contribution so that $epsilon/epsilon$ is negative and has a magnitude of order $10^{-4}$. Possible reasons for these unsatisfactory results are discussed.
We have computed the SU(2) Low Energy Constant l5 and the mass splitting between charged and neutral pions from a lattice QCD simulation of nf = 2 + 1 flavors of Domain Wall Fermions at a scale of a-1 = 2.33GeV. Relating l5 to the S parameter in QCD we obtain a value of S(mH=120GeV) = 0.42(7), in agreement with previous determinations. Our result can be compared with the value of S from electroweak precision data which constrains strongly interacting models of new physics like Technicolor. This work in QCD serves as a test for the methods to compute the S parameter with Domain Wall Fermions in theories beyond the Standard Model. We also infer a value for the pion mass splitting in agreement with experiment.
546 - Shoichi Sasaki 2009
We present a quenched lattice calculation of the weak nucleon form factors: vector (F_V(q^2)), induced tensor (F_T(q^2)), axial-vector (F_A(q^2)) and induced pseudo-scalar (F_P(q^2)) form factors. Our simulations are performed on three different latt ice sizes L^3 x T=24^3 x 32, 16^3 x 32 and 12^3 x 32 with a lattice cutoff of 1/a = 1.3 GeV and light quark masses down to about 1/4 the strange quark mass (m_{pi} = 390 MeV) using a combination of the DBW2 gauge action and domain wall fermions. The physical volume of our largest lattice is about (3.6 fm)^3, where the finite volume effects on form factors become negligible and the lower momentum transfers (q^2 = 0.1 GeV^2) are accessible. The q^2-dependences of form factors in the low q^2 region are examined. It is found that the vector, induced tensor, axial-vector form factors are well described by the dipole form, while the induced pseudo-scalar form factor is consistent with pion-pole dominance. We obtain the ratio of axial to vector coupling g_A/g_V=F_A(0)/F_V(0)=1.219(38) and the pseudo-scalar coupling g_P=m_{mu}F_P(0.88m_{mu}^2)=8.15(54), where the errors are statistical erros only. These values agree with experimental values from neutron beta decay and muon capture on the proton. However, the root mean squared radii of the vector, induced tensor and axial-vector underestimate the known experimental values by about 20%. We also calculate the pseudo-scalar nucleon matrix element in order to verify the axial Ward-Takahashi identity in terms of the nucleon matrix elements, which may be called as the generalized Goldberger-Treiman relation.
We present a quenched lattice calculation of the nucleon isovector vector and axial-vector charges gV and gA. The chiral symmetry of domain wall fermions makes the calculation of the nucleon axial charge particularly easy since the Ward-Takahashi ide ntity requires the vector and axial-vector currents to have the same renormalization, up to lattice spacing errors of order O(a^2). The DBW2 gauge action provides enhancement of the good chiral symmetry properties of domain wall fermions at larger lattice spacing than the conventional Wilson gauge action. Taking advantage of these methods and performing a high statistics simulation, we find a significant finite volume effect between the nucleon axial charges calculated on lattices with (1.2 fm)^3 and (2.4 fm)^3 volumes (with lattice spacing, a, of about 0.15 fm). On the large volume we find gA = 1.212 +/- 0.027(statistical error) +/- 0.024(normalization error). The quoted systematic error is the dominant (known) one, corresponding to current renormalization. We discuss other possible remaining sources of error. This theoretical first principles calculation, which does not yet include isospin breaking effects, yields a value of gA only a little bit below the experimental one, 1.2670 +/- 0.0030.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا