ﻻ يوجد ملخص باللغة العربية
The quantum field theory describing the massive O(2) nonlinear sigma-model is investigated through two non-perturbative constructions: The form factor bootstrap based on integrability and the lattice formulation as the XY model. The S-matrix, the spin and current two-point functions, as well as the 4-point coupling are computed and critically compared in both constructions. On the bootstrap side a new parafermionic super selection sector is found; in the lattice theory a recent prediction for the (logarithmic) decay of lattice artifacts is probed.
We develop a systematic DLCQ perturbation theory and show that DLCQ S-matrix does not have a covariant continuum limit for processes with $p^+=0$ exchange. This implies that the role of the zero mode is more subtle than ever considered in DLCQ and he
We show that all current formalisms for quarks in lattice QCD are consistent in the quenched continuum limit, as they should be. We improve on previous extrapolations to this limit, and the understanding of lattice systematic errors there, by using a
We present a lattice-QCD calculation of the pion distribution amplitudes using large-momentum effective theory (LaMET). Our calculation is carried out using five ensembles with 2+1+1 flavors of highly improved staggered quarks (HISQ), generated by MI
We consider the 2d XY Model with topological lattice actions, which are invariant against small deformations of the field configuration. These actions constrain the angle between neighbouring spins by an upper bound, or they explicitly suppress vorti
Evaluation of the continuum limit of the axial anomaly and index is sketched for the staggered overlap Dirac operator. There are new complications compared to the usual overlap case due to the distribution of the spin and flavor components around lat