We develop a systematic DLCQ perturbation theory and show that DLCQ S-matrix does not have a covariant continuum limit for processes with $p^+=0$ exchange. This implies that the role of the zero mode is more subtle than ever considered in DLCQ and hence must be treated with great care also in non-perturbative approach. We also make a brief comment on DLCQ in string theory.
The quantum field theory describing the massive O(2) nonlinear sigma-model is investigated through two non-perturbative constructions: The form factor bootstrap based on integrability and the lattice formulation as the XY model. The S-matrix, the spi
n and current two-point functions, as well as the 4-point coupling are computed and critically compared in both constructions. On the bootstrap side a new parafermionic super selection sector is found; in the lattice theory a recent prediction for the (logarithmic) decay of lattice artifacts is probed.
We propose a way to recover Lorentz invariance of the perturbative S matrix in the Discrete Light-Cone Quantization (DLCQ) in the continuum limit without spoiling the trivial vacuum.
The quasi-PDF approach provides a path to computing parton distribution functions (PDFs) using lattice QCD. This approach requires matrix elements of a power-divergent operator in a nucleon at high momentum and one generically expects discretization
effects starting at first order in the lattice spacing $a$. Therefore, it is important to demonstrate that the continuum limit can be reliably taken and to understand the size and shape of lattice artifacts. In this work, we report a calculation of isovector unpolarized and helicity PDFs using lattice ensembles with $N_f=2+1+1$ Wilson twisted mass fermions, a pion mass of approximately 370 MeV, and three different lattice spacings. Our results show a significant dependence on $a$, and the continuum extrapolation produces a better agreement with phenomenology. The latter is particularly true for the antiquark distribution at small momentum fraction $x$, where the extrapolation changes its sign.
We derive the chiral kinetic equation in 8 dimensional phase space in non-Abelian $SU(N)$ gauge field within the Wigner function formalism. By using the covariant gradient expansion, we disentangle the Wigner equations in four-vector space up to the
first order and find that only the time-like component of the chiral Wigner function is independent while other components can be explicit derivative. After further decomposing the Wigner function or equations in color space, we present the non-Abelian covariant chiral kinetic equation for the color singlet and multiplet phase-space distribution functions. These phase-space distribution functions have non-trivial Lorentz transformation rules when we define them in different reference frames. The chiral anomaly from non-Abelian gauge field arises naturally from the Berry monopole in Euclidian momentum space in the vacuum or Dirac sea contribution. The anomalous currents as non-Abelian counterparts of chiral magnetic effect and chiral vortical effect have also been derived from the non-Abelian chiral kinetic equation.
We study the generalisations of the Craps-Sethi-Verlinde matrix big bang model to curved, in particular plane wave, space-times, beginning with a careful discussion of the DLCQ procedure. Singular homogeneous plane waves are ideal toy-models of reali
stic space-time singularities since they have been shown to arise universally as their Penrose limits, and we emphasise the role played by the symmetries of these plane waves in implementing the flat space Seiberg-Sen DLCQ prescription for these curved backgrounds. We then analyse various aspects of the resulting matrix string Yang-Mills theories, such as the relation between strong coupling space-time singularities and world-sheet tachyonic mass terms. In order to have concrete examples at hand, in an appendix we determine and analyse the IIA singular homogeneous plane wave - null dilaton backgrounds.