ﻻ يوجد ملخص باللغة العربية
A detailed study of an inhomogeneous dust cosmology contained in a $gamma$-law family of perfect-fluid metrics recently presented by Mars and Senovilla is performed. The metric is shown to be the most general orthogonally transitive, Abelian, $G_2$ on $S_2$ solution admitting an additional homothety such that the self-similar group $H_3$ is of Bianchi type VI and the fluid flow is tangent to its orbits. The analogous cases with Bianchi types I, II, III, V, VIII and IX are shown to be impossible thus making this metric privileged from a mathematical viewpoint. The differential equations determining the metric are partially integrated and the line-element is given up to a first order differential equation of Abel type of first kind and two quadratures. The solutions are qualitatively analyzed by investigating the corresponding autonomous dynamical system. The spacetime is regular everywhere except for the big bang and the metric is complete both into the future and in all spatial directions. The energy-density is positive, bounded from above at any instant of time and with an spatial profile (in the direction of inhomogeneity) which is oscillating with a rapidly decreasing amplitude. The generic asymptotic behaviour at spatial infinity is a homogeneous plane wave. Well-known dynamical system results indicate that this metric is very likely to describe the asymptotic behaviour in time of a much more general class of inhomogeneous $G_2$ dust cosmologies.
Why is the Universe so homogeneous and isotropic? We summarize a general study of a $gamma$-law perfect fluid alongside an inhomogeneous, massless scalar gauge field (with homogeneous gradient) in anisotropic spaces with General Relativity. The aniso
We investigate a class of cylindrically symmetric inhomogeneous $Lambda$-dust spacetimes which have a regular axis and some zero expansion component. For $Lambda e 0$, we obtain new exact solutions to the Einstein equations and show that they are uni
We analyze the existence of inflationary solutions in an inhomogeneous Kaluza-Klein cosmological model in 4+n dimensions. It is shown that the 5-dimensional case is the exception rather than the rule, in the sense that the system is integrable (under
We introduce a generalization of the 4-dimensional averaging window function of Gasperini, Marozzi and Veneziano (2010) that may prove useful for a number of applications. The covariant nature of spatial scalar averaging schemes to address the averag
The asymptotic properties of self-similar spherically symmetric perfect fluid solutions with equation of state p=alpha mu (-1<alpha<1) are described. We prove that for large and small values of the similarity variable, z=r/t, all such solutions must