ترغب بنشر مسار تعليمي؟ اضغط هنا

A study of inhomogeneous massless scalar gauge fields in cosmology

77   0   0.0 ( 0 )
 نشر من قبل Ben David Normann Mr.
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Why is the Universe so homogeneous and isotropic? We summarize a general study of a $gamma$-law perfect fluid alongside an inhomogeneous, massless scalar gauge field (with homogeneous gradient) in anisotropic spaces with General Relativity. The anisotropic matter sector is implemented as a $j$-form (field-strength level), where $j,in,{1,3}$, and the spaces studied are Bianchi space-times of solvable type. Walds no-hair theorem is extended to include the $j$-form case. We highlight three new self-similar space-times: the Edge, the Rope and Wonderland. The latter solution is so far found to exist in the physical state space of types I,II, IV, VI$_0$, VI$_h$, VII$_0$ and VII$_h$, and is a global attractor in I and V. The stability analysis of the other types has not yet been performed. This paper is a summary of ~[1], with some remarks towards new results which will be further laid out in upcoming work.



قيم البحث

اقرأ أيضاً

We introduce a generalization of the 4-dimensional averaging window function of Gasperini, Marozzi and Veneziano (2010) that may prove useful for a number of applications. The covariant nature of spatial scalar averaging schemes to address the averag ing problem in relativistic cosmology is an important property that is implied by construction, but usually remains implicit. We employ here the approach of Gasperini et al. for two reasons. First, the formalism and its generalization presented here are manifestly covariant. Second, the formalism is convenient for disentangling the dependencies on foliation, volume measure, and boundaries in the averaged expressions entering in scalar averaging schemes. These properties will prove handy for simplifying expressions, but also for investigating extremal foliations and for comparing averaged properties of different foliations directly. The proposed generalization of the window function allows for choosing the most appropriate averaging scheme for the physical problem at hand, and for distinguishing between the role of the foliation itself and the role of the volume measure in averaged dynamic equations. We also show that one particular window function obtained from this generalized class results in an averaging scheme corresponding to that of a recent investigation by Buchert, Mourier and Roy (2018) and, as a byproduct, we explicitly show that the general equations for backreaction derived therein are covariant.
In the present article we study the cosmological evolution of a two-scalar field gravitational theory defined in the Jordan frame. Specifically, we assume one of the scalar fields to be minimally coupled to gravity, while the second field which is th e Brans-Dicke scalar field is nonminimally coupled to gravity and also coupled to the other scalar field. In the Einstein frame this theory reduces to a two-scalar field theory where the two fields can interact only in the potential term, which means that the quintom theory is recovered. The cosmological evolution is studied by analyzing the equilibrium points of the field equations in the Jordan frame. We find that the theory can describe the cosmological evolution in large scales, while inflationary solutions are also provided.
We investigate the cosmological applications of new gravitational scalar-tensor theories, which are novel modifications of gravity possessing 2+2 propagating degrees of freedom, arising from a Lagrangian that includes the Ricci scalar and its first a nd second derivatives. Extracting the field equations we obtain an effective dark energy sector that consists of both extra scalar degrees of freedom, and we determine various observables. We analyze two specific models and we obtain a cosmological behavior in agreement with observations, i.e. transition from matter to dark energy era, with the onset of cosmic acceleration. Additionally, for a particular range of the model parameters, the equation-of-state parameter of the effective dark energy sector can exhibit the phantom-divide crossing. These features reveal the capabilities of these theories, since they arise solely from the novel, higher-derivative terms.
We consider the late time one-loop quantum backreaction from inflationary fluctuations of a non-minimally coupled, massless scalar field. The scalar is assumed to be a spectator field in an inflationary model with a constant principal slow roll $epsi lon$ parameter. We regulate the infrared by matching onto a pre-inflationary radiation era. We find a large late time backreaction when the nonminimal coupling $xi$ is negative (in which case the scalar exhibits a negative mass term during inflation). The one-loop quantum backreaction becomes significant today for moderately small non-minimal couplings, $xisim -1/20$, and it changes sign (from negative to positive) at a recent epoch when inflation lasts not much longer than what is minimally required, $N gtrsim 66$. Since currently we do not have a way of treating the classical fluid and the quantum backreaction in a self-consistent manner, we cannot say decidely whether the backreaction from inflationary quantum fluctuations of a non-minimally coupled scalar can mimic dark energy.
In this paper, we describe the first steps towards fully non-perturbative cosmology. We explain why the conventional methods used by cosmologists based on the ADM formulation are generally inadequate for this purpose and why it is advantageous instea d to adapt the harmonic formulation pioneered and utilized in mathematical and numerical relativity. Here we focus on using this approach to evaluating the linear mode stability in homogeneous and nearly homogeneous backgrounds and devising a valid scheme and diagnostics for numerical computation. We also briefly touch on the relevance of these methods for extracting cosmological observables from non-perturbative simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا