ﻻ يوجد ملخص باللغة العربية
Boundary actions for three-dimensional quantum gravity in the discretized formalism of Ponzano-Regge are studied with a view towards understanding the boundary degrees of freedom. These degrees of freedom postulated in the holography hypothesis are supposed to be characteristic of quantum gravity theories. In particular it is expected that some of these degrees of freedom reside on black hole horizons. This paper is a study of these ideas in the context of a theory of quantum gravity that requires no additional structure such as supersymmetry or special gravitational backgrounds. Lorentzian as well as Euclidean regimes are examined. Some surprising relationships to Liouville theory and string theory in AdS(3) are found.
Virial (aka scaling) identities are integral identities that are useful for a variety of purposes in non-linear field theories, including establishing no-go theorems for solitonic and black hole solutions, as well as for checking the accuracy of nume
In this note, I describe an attempt to construct a phenomenological gravitational model at the boundary of the AdS manifold from the variation of boundary terms in the gravitational action. I find that for an AdS vacuum in the bulk, geometric constra
We investigate the propagator of 3d quantum gravity, formulated as a discrete topological path integral. We define it as the Ponzano-Regge amplitude of the solid cylinder swept by a 2d disk evolving in time. Quantum states for a 2d disk live in the t
We consider the path-sum of Ponzano-Regge with additional boundary contributions in the context of the holographic principle of Quantum Gravity. We calculate an holographic projection in which the bulk partition function goes to a semi-classical limi
We analyze the effects of the back reaction due to a conformal field theory (CFT) on a black hole spacetime with negative cosmological constant. We study the geometry numerically obtained by taking into account the energy momentum tensor of CFT appro