ﻻ يوجد ملخص باللغة العربية
We compute the absorption spectrum for multimagnon excitations assisted by phonons in insulating layered cuprates using exact diagonalization in clusters of up to 32 sites. The resulting line shape is very sensitive to the underlying magnetic Hamiltonian describing the spin dynamics. For the usual Heisenberg description of undoped Cu-O planes we find, in accordance with experiment, a two-magnon peak followed by high energy side bands. However the relative weight of the side bands is too small to reproduce the experiment. An extended Heisenberg model including a sizable four-site cyclic exchange term is shown to be consistent with the experimental data.
We use the state-of-the-art tensor network state method, specifically, the finite projected entangled pair state (PEPS) algorithm, to simulate the global phase diagram of spin-$1/2$ $J_1$-$J_2$ Heisenberg model on square lattices up to $24times 24$.
We study the spin dynamics of classical Heisenberg antiferromagnet with nearest neighbor interactions on a quasi-two-dimensional kagome bilayer. This geometrically frustrated lattice consists of two kagome layers connected by a triangular-lattice lin
Based on the mapping between $s=1/2$ spin operators and hard-core bosons, we extend the cluster perturbation theory to spin systems and study the whole excitation spectrum of the antiferromagnetic $J_{1}$-$J_{2}$ Heisenberg model on the square lattic
A perturbation spin-wave theory for the quantum Heisenberg antiferromagnets on a square lattice is proposed to calculate the uniform static magnetic susceptibility at finite temperatures, where a divergence in the previous theories due to an artifici
The correlated spin dynamics and the temperature dependence of the correlation length $xi(T)$ in two-dimensional quantum ($S=1/2$) Heisenberg antiferromagnets (2DQHAF) on square lattice are discussed in the light of experimental results of proton spi