ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin dynamics of the antiferromagnetic Heisenberg model on a kagome bilayer

125   0   0.0 ( 0 )
 نشر من قبل Gia-Wei Chern
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the spin dynamics of classical Heisenberg antiferromagnet with nearest neighbor interactions on a quasi-two-dimensional kagome bilayer. This geometrically frustrated lattice consists of two kagome layers connected by a triangular-lattice linking layer. By combining Monte Carlo with precessional spin dynamics simulations, we compute the dynamical structure factor of the classical spin liquid in kagome bilayer and investigate the thermal and dilution effects. While the low frequency and long wavelength dynamics of the cooperative paramagnetic phase is dominated by spin diffusion, weak magnon excitations persist at higher energies, giving rise the half moon pattern in the dynamical structure factor. In the presence of spin vacancies, the dynamical properties of the diluted system can be understood within the two population picture. The spin diffusion of the correlated spin clusters is mainly driven by the zero-energy weather-van modes, giving rise to an autocorrelation function that decays exponentially with time. On the other hand, the diffusive dynamics of the quasi-free orphan spins leads to a distinctive longer time power-law tail in the autocorrelation function. We discuss the implications of our work for the glassy behaviors observed in the archetypal frustrated magnet SrCr$_{9p}$Ga$_{12-9p}$O$_{19}$ (SCGO).



قيم البحث

اقرأ أيضاً

Motivated by recent experiments on the Heisenberg S=1/2 quantum spin liquid candidate material kapellasite, we classify all possible chiral (time-reversal symmetry breaking) spin liquids with fermionic spinons on the kagome lattice. We obtain the pha se diagram for the physically relevant extended Heisenberg model, comparing the energies of a wide range of microscopic variational wave functions. We propose that, at low temperature, kapellasite exhibits a gapless chiral spin liquid phase with spinon Fermi surfaces. This two-dimensional state inherits many properties of the nearby one-dimensional phase of decoupled anti-ferromagnetic spin chains, but also shows some remarkable differences. We discuss the spin structure factors and other physical properties.
We compute the absorption spectrum for multimagnon excitations assisted by phonons in insulating layered cuprates using exact diagonalization in clusters of up to 32 sites. The resulting line shape is very sensitive to the underlying magnetic Hamilto nian describing the spin dynamics. For the usual Heisenberg description of undoped Cu-O planes we find, in accordance with experiment, a two-magnon peak followed by high energy side bands. However the relative weight of the side bands is too small to reproduce the experiment. An extended Heisenberg model including a sizable four-site cyclic exchange term is shown to be consistent with the experimental data.
We study the field dependence of the antiferromagnetic spin-1/2 Heisenberg model on the square lattice by means of exact diagonalizations. In a first part, we calculate the spin-wave velocity, the spin-stiffness, and the magnetic susceptibility and t hus determine the microscopic parameters of the low-energy long-wavelength description. In a second part, we present a comprehensive study of dynamical spin correlation functions for magnetic fields ranging from zero up to saturation. We find that at low fields, magnons are well defined in the whole Brillouin zone, but the dispersion is substantially modified by quantum fluctuations compared to the classical spectrum. At higher fields, decay channels open and magnons become unstable with respect to multi-magnon scattering. Our results directly apply to inelastic neutron scattering experiments.
235 - A.A. Vladimirov , D. Ihle , 2017
We present a spin-rotation-invariant Green-function theory for the dynamic spin susceptibility in the spin-1/2 antiferromagnetic Heisenberg model on a stacked honeycomb lattice. Employing a generalized mean-field approximation for arbitrary temperatu res, the thermodynamic quantities (two-spin correlation functions, internal energy, magnetic susceptibility, staggered magnetization, Neel temperature, correlation length) and the spin-excitation spectrum are calculated by solving a coupled system of self-consistency equations for the correlation functions. The temperature dependence of the magnetic (uniform static) susceptibility is ascribed to antiferromagnetic short-range order. The N{e}el temperature is calculated for arbitrary interlayer couplings. Our results are in a good agreement with numerical computations for finite clusters and with available experimental data on the beta-Cu2V2O2 compound.
We perform an extensive density matrix renormalization group (DMRG) study of the ground-state phase diagram of the spin-1/2 J_1-J_2 Heisenberg model on the kagome lattice. We focus on the region of the phase diagram around the kagome Heisenberg antif erromagnet, i.e., at J_2=0. We investigate the static spin structure factor, the magnetic correlation lengths, and the spin gaps. Our results are consistent with the absence of magnetic order in a narrow region around J_2approx 0, although strong finite-size effects do not allow us to accurately determine the phase boundaries. This result is in agreement with the presence of an extended spin-liquid region, as it has been proposed recently. Outside the disordered region, we find that for ferromagnetic and antiferromagnetic J_2 the ground state displays signatures of the magnetic order of the sqrt{3}timessqrt{3} and the q=0 type, respectively. Finally, we focus on the structure of the entanglement spectrum (ES) in the q=0 ordered phase. We discuss the importance of the choice of the bipartition on the finite-size structure of the ES.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا