ﻻ يوجد ملخص باللغة العربية
We have studied the temperature dependence of diagonal conductivity in high-mobility two-dimensional samples at filling factors $ u=1/2$ and 3/2 at low temperatures. We observe a logarithmic dependence on temperature, from our lowest temperature of 13 mK up to 400 mK. We attribute the logarithmic correction to the effects of interaction between composite fermions, analogous to the Altshuler-Aronov type correction for electrons at zero magnetic field. The paper is accepted for publication in Physical Review B, Rapid Communications.
Composite fermions in fractional quantum Hall (FQH) systems are believed to form a Fermi sea of weakly interacting particles at half filling $ u=1/2$. Recently, it was proposed (D. T. Son, Phys. Rev. X 5, 031027 (2015)) that these composite fermions
We have investigated temperature dependence of the longitudinal conductivity $sigma_{xx}$ at integer filling factors $ u =i$ for Si/SiGe heterostructure in the quantum Hall effect regime. It is shown that for odd $i$, when the Fermi level $E_{F}$ is
The effects of interactions in a 2D electron system in a strong magnetic field of two degenerate Landau levels with opposite spins and at filling factors 1/2 are studied. Using the Chern-Simons gauge transformation, the system is mapped to Composite
Fractional quantum Hall states at half-integer filling factors have been observed in many systems beyond the $5/2$ and $7/2$ plateaus in GaAs quantum wells. This includes bilayer states in GaAs, several half-integer plateaus in ZnO-based heterostruct
We develop a phenomenological description of the nu=5/2 quantum Hall state in which the Halperin-Lee-Read theory of the half-filled Landau level is combined with a p-wave pairing interaction between composite fermions (CFs). The electromagnetic respo