ﻻ يوجد ملخص باللغة العربية
The effects of interactions in a 2D electron system in a strong magnetic field of two degenerate Landau levels with opposite spins and at filling factors 1/2 are studied. Using the Chern-Simons gauge transformation, the system is mapped to Composite Fermions. The fluctuations of the gauge field induce an effective interaction between the Composite Fermions which can be attractive in both the particle-particle and in the particle-hole channel. As a consequence, a spin-singlet (s-wave) ground state of Composite Fermions can exist with a finite pair-breaking energy gap for particle-particle or particle-hole pairs. The competition between these two possible ground states is discussed. For long-range Coulomb interaction the particle-particle state is favored if the interaction strength is small. With increasing interaction strength there is a crossover towards the particle-hole state. If the interaction is short range, only the particle-particle state is possible.
There is increasing experimental evidence for fractional quantum Hall effect at filling factor $ u=2+3/8$. Modeling it as a system of composite fermions, we study the problem of interacting composite fermions by a number of methods. In our variationa
Composite fermions in fractional quantum Hall (FQH) systems are believed to form a Fermi sea of weakly interacting particles at half filling $ u=1/2$. Recently, it was proposed (D. T. Son, Phys. Rev. X 5, 031027 (2015)) that these composite fermions
Spin excitations from a partially populated composite fermion level are studied above and below $ u=1/3$. In the range $2/7< u<2/5$ the experiments uncover significant departures from the non-interacting composite fermion picture that demonstrate the
The relation between the conductivity tensors of Composite Fermions and electrons is extended to second generation Composite Fermions. It is shown that it crucially depends on the coupling matrix for the Chern-Simons gauge field. The results are appl
We evaluate the dynamic structure factor $S(q,omega)$ of interacting one-dimensional spinless fermions with a nonlinear dispersion relation. The combined effect of the nonlinear dispersion and of the interactions leads to new universal features of $S