ﻻ يوجد ملخص باللغة العربية
We study the electronic structures and dielectric functions of the simple hydrides LiH, NaH, MgH2 and AlH3, and the complex hydrides Li3AlH6, Na3AlH6, LiAlH4, NaAlH4 and Mg(AlH4)2, using first principles density functional theory and GW calculations. All these compounds are large gap insulators with GW single particle band gaps varying from 3.5 eV in AlH3 to 6.5 eV in the MAlH4 compounds. The valence bands are dominated by the hydrogen atoms, whereas the conduction bands have mixed contributions from the hydrogens and the metal cations. The electronic structure of the aluminium compounds is determined mainly by aluminium hydride complexes and their mutual interactions. Despite considerable differences between the band structures and the band gaps of the various compounds, their optical responses are qualitatively similar. In most of the spectra the optical absorption rises sharply above 6 eV and has a strong peak around 8 eV. The quantitative differences in the optical spectra are interpreted in terms of the structure and the electronic structure of the compounds.
Zirconium alloys are used as nuclear fuel cladding material due to their mechanical and corrosion resistant properties together with their favorable cross-section for neutron scattering. At running conditions, however, there will be an increase of hy
The complex optical properties of a single crystal of hexagonal FeCrAs ($T_N simeq 125$ K) have been determined above and below $T_N$ over a wide frequency range in the planes (along the $b$ axis), and along the perpendicular ($c$ axis) direction. At
In the framework of four-band envelope-function formalism, developed earlier for spherical semiconductor nanocrystals, we study the electronic structure and optical properties of quantum-confined lead-salt (PbSe and PbS) nanowires (NWs) with a strong
Due to their characteristic geometry, TiO$_2$ nanotubes (TNTs), suitably doped by metal-substitution to enhance their photocatalytic properties, have a high potential for applications such as clean fuel production. In this context, we present a detai
The magnetic and electronic properties of metal phthalocyanines (MPc) and fluorinated metal phthalocyanines (F$_{16}$MPc) are studied by means of spin density functional theory (SDFT). Several metals (M) such as Ca, all first d-row transition metals