ترغب بنشر مسار تعليمي؟ اضغط هنا

Electronic structure and optical properties of quantum confined lead-salt nanowires

111   0   0.0 ( 0 )
 نشر من قبل Valery Rupasov
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Valery I. Rupasov




اسأل ChatGPT حول البحث

In the framework of four-band envelope-function formalism, developed earlier for spherical semiconductor nanocrystals, we study the electronic structure and optical properties of quantum-confined lead-salt (PbSe and PbS) nanowires (NWs) with a strong coupling between the conduction and the valence bands. We derive spatial quantization equations, and calculate numerically energy levels of spatially quantized states of a transverse electron motion in the plane perpendicular to the NW axis, and electronic subbands developed due to a free longitudinal motion along the NW axis. Using explicit expressions for eigenfunctions of the electronic states, we also derive analytical expressions for matrix elements of optical transitions and study selection rules for interband absorption. Next we study a two-particle problem with a conventional long-range Coulomb interaction and an interparticle coupling via medium polarization. The obtained results show that due to a large magnitude of the high-frequency dielectric permittivity of PbSe material, and hence, a high dielectric NW/vacuum contrast, the effective coupling via medium polarization significantly exceeds the effective direct Coulomb coupling at all interparticle separations along the NW axis. Furthermore, the strong coupling via medium polarization results in a bound state of the longitudinal motion of the lowest-energy electron-hole pair (a longitudinal exciton), while fast transverse motions of charge carriers remain independent of each other.



قيم البحث

اقرأ أيضاً

115 - Valery I. Rupasov 2009
Auger recombination (AR) of the ground biexciton state in quantum-confined lead salt nanowires (NWs) with a strong coupling between the conduction and the valence bands is shown to be strongly suppressed, and only excited biexciton states contribute to Auger decay. The AR rate is predicted to be greatly reduced when temperature or the NW radius are decreased, and the effect is explained by decrease in both the population of excited biexciton states and overlap of phonon-broadened single- and biexciton states. Suppression of AR of multiexciton states exhibiting strong radiative decay makes obviously lead salt NWs a subject of special interest for numerous lasing applications.
We present a study of the electronic and magnetic properties of the multiple-decker sandwich nanowires ($CP-M$) composed of cyclopentadienyl (CP) rings and 3d transition metal atoms (M=Ti to Ni) using first-principles techniques. We demonstrate using Density Functional Theory that structural relaxation play an important role in determining the magnetic ground-state of the system. Notably, the computed magnetic moment is zero in $CP-Mn$, while in $CP-V$ a significant turn-up in magnetic moment is evidenced. Two compounds show a half-metallic ferromagnetic ground state $CP-Fe/Cr$ with a gap within minority/majority spin channel. In order to study the effect of electronic correlations upon the half-metallic ground states in $CP-Cr$, we introduce a simplified three-bands Hubbard model which is solved within the Variational Cluster Approach. We discuss the results as a function of size of the reference cluster and the strength of average Coulomb $U$ and exchange $J$ parameters. Our results demonstrate that for the range of studied parameters $U=2-4eV$ and $J=0.6-1.2eV$ the half-metallic character is not maintained in the presence of local Coulomb interactions.
A quasiperiodic Pb monolayer has been formed on the five-fold surface of the Al-Pd-Mn quasicrystal. Growth of the monolayer proceeds via self-assembly of an interconnected network of pentagonal Pb stars, which are shown to be tau-inflated compared to similar structural elements of the quasiperiodic substrate. Measurements of the electronic structure of the system using scanning tunnelling spectroscopy and ultra-violet photoemission spectroscopy reveal that the Pb monolayer displays a pseudo-gap at the Fermi level which is directly related to its quasiperiodic structure.
283 - M. Sprinkle , J. Hicks , A. Tejeda 2010
We review progress in developing epitaxial graphene as a material for carbon electronics. In particular, improvements in epitaxial graphene growth, interface control and the understanding of multilayer epitaxial graphenes electronic properties are di scussed. Although graphene grown on both polar faces of SiC is addressed, our discussions will focus on graphene grown on the (000-1) C-face of SiC. The unique properties of C-face multilayer epitaxial graphene have become apparent. These films behave electronically like a stack of nearly independent graphene sheets rather than a thin Bernal-stacked graphite sample. The origin of multilayer graphenes electronic behavior is its unique highly-ordered stacking of non-Bernal rotated graphene planes. While these rotations do not significantly affect the inter-layer interactions, they do break the stacking symmetry of graphite. It is this broken symmetry that causes each sheet to behave like an isolated graphene plane.
We have investigated the electronic and thermoelectric properties of half-Heusler alloys NiTZ (T = Sc, and Ti; Z = P, As, Sn, and Sb) having 18 valence electron. Calculations are performed by means of density functional theory and Boltzmann transport equation with constant relaxation time approximation, validated by NiTiSn. The chosen half-Heuslers are found to be an indirect band gap semiconductor, and the lattice thermal conductivity is comparable with the state-of-the-art thermoelectric materials. The estimated power factor for NiScP, NiScAs, and NiScSb reveals that their thermoelectric performance can be enhanced by appropriate doping rate. The value of ZT found for NiScP, NiScAs, and NiScSb are 0.46, 0.35, and 0.29, respectively at 1200 K.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا