ﻻ يوجد ملخص باللغة العربية
We present a theoretical analysis of current driven ferromagnetic resonance in a ferromagnet/normal-metal/ferromagnet tri-layer. This method of driving ferromagnetic resonance was recently realized experimentally by Tulapurkar et al. [Nature 438, 339 (2005)] and Sankey et al. [Phys. Rev. Lett. 96, 227601 (2006)]. The precessing magnetization rectifies the alternating current applied to drive the ferromagnetic resonance and leads to the generation of a dc voltage. Our analysis shows that a second mechanism to generate a dc voltage, rectification of spin currents emitted by the precessing magnetization, has a contribution to the dc voltage that is of approximately equal size for the thin ferromagnetic films used in the experiment.
Creating, manipulating and detecting spin polarized carriers are the key elements of spin based electronics. Most practical devices use a perpendicular geometry in which the spin currents, describing the transport of spin angular momentum, are accomp
We study the tunneling conductance of a ballistic normal metal / ferromagnet / spin-triplet superconductor junction using the extended Blonder-Tinkham-Klapwijk formalism as a model for a $c$-axis oriented Au / SrRuO$_{3}$ / Sr$_{2}$RuO$_{4}$ junction
We describe electrical detection of spin pumping in metallic nanostructures. In the spin pumping effect, a precessing ferromagnet attached to a normal-metal acts as a pump of spin-polarized current, giving rise to a spin accumulation. The resulting s
We study the effects of the coupling between magnetization dynamics and the electronic degrees of freedom in a heterostructure of a metallic nanomagnet with dynamic magnetization coupled with a superconductor containing a steady spin-splitting field.
We present a theoretical model that describes electrical spin-detection at a ferromagnet/semiconductor interface. We show that the sensitivity of the spin detector has strong bias dependence which, in the general case, is dramatically different from