ﻻ يوجد ملخص باللغة العربية
We use elastomeric polydimethylsiloxane substrates to strain single-walled carbon nanotubes and modulate their electronic properties, with the aim of developing flexible materials that can sense local strain. We demonstrate micron-scale nanotube devices that can be cycled repeatedly through strains as high as 20% while providing reproducible local strain transduction by via the device resistance. We also compress individual nanotubes, and find they undergo an undulatory distortion with a characteristic spatial period of 100-200 nm. The observed period can be understood by the mechanical properties of nanotubes and the substrate in conjunction with continuum elasticity theory. These could potentially be used to create superlattices within individual nanotubes, enabling novel devices and applications.
We report on the nano-electron beam assisted fabrication of atomically sharp iron-based tips and on the creation of a nano-soldering iron for nano-interconnects using Fe-filled multiwalled carbon nanotubes (MWCNTs). High energy electron beam machinin
New forms of carbon-based materials have received great attention, and the developed materials have found many applications in nanotechnology. Interesting novel carbon structures include the carbon peapods, which are comprised of fullerenes encapsula
Super-compressible foam-like carbon nanotube films have been reported to exhibit highly nonlinear viscoelastic behaviour in compression similar to soft tissue. Their unique combination of light weight and exceptional electrical, thermal and mechanica
We describe a film of highly-aligned single-walled carbon nanotubes that acts as an excellent terahertz linear polarizer. There is virtually no attenuation (strong absorption) when the terahertz polarization is perpendicular (parallel) to the nanotub
We report on single-wall carbon nanotube (SWCNT) specific $^{13}$C isotope enrichment. The high temperature annealing of isotope enriched fullerenes encapsulated in SWCNTs yields double-wall carbon nanotubes (DWCNTs) with a high isotope enrichment of