ﻻ يوجد ملخص باللغة العربية
New forms of carbon-based materials have received great attention, and the developed materials have found many applications in nanotechnology. Interesting novel carbon structures include the carbon peapods, which are comprised of fullerenes encapsulated within carbon nanotubes. Peapod-like nanostructures have been successfully synthesized, and have been used in optical modulation devices, transistors, solar cells, and in other devices. However, the mechanical properties of these structures are not completely elucidated. In this work, we investigated, using fully atomistic molecular dynamics simulations, the deformation of carbon peapods under high-strain rate conditions, which are achieved by shooting the peapods at ultrasonic velocities against a rigid substrate. Our results show that carbon peapods experience large deformation at impact, and undergo multiple fracture pathways, depending primarily on the relative orientation between the peapod and the substrate, and the impact velocity. Observed outcomes include fullerene ejection, carbon nanotube fracture, fullerene, and nanotube coalescence, as well as the formation of amorphous carbon structures.
Carbon nanomembranes made from aromatic precursor molecules are free standing nanometer thin materials of macroscopic lateral dimensions. Although produced in vario
The nucleation of cavities in a homogenous polymer under tensile strain is investigated in a coarse-grained molecular dynamics simulation. In order to establish a causal relation between local microstructure and the onset of cavitation, a detailed an
Super-compressible foam-like carbon nanotube films have been reported to exhibit highly nonlinear viscoelastic behaviour in compression similar to soft tissue. Their unique combination of light weight and exceptional electrical, thermal and mechanica
We measure the conductance of carbon nanotube peapods from room temperature down to 250mK. Our devices show both metallic and semiconducting behavior at room temperature. At the lowest temperatures, we observe single electron effects. Our results sug
We use elastomeric polydimethylsiloxane substrates to strain single-walled carbon nanotubes and modulate their electronic properties, with the aim of developing flexible materials that can sense local strain. We demonstrate micron-scale nanotube devi