ﻻ يوجد ملخص باللغة العربية
Two beta-pyrochlore oxide superconductors, CsOs2O6 and RbOs2O6, are studied thermodynamically by measuring specific heat on polycrystalline samples. It is found that a Sommerfeld coefficient ? is nearly equal, 20 mJ/K2 mol Os, in the two oxides with different superconducting transition temperatures; Tc = 3.3 K and 6.3 K, respectively. This suggests that the density of states at the Fermi level is not a crucial parameter to determine the Tc of the beta-pyrochlore oxide superconductors, which is incompatible with the general expectation for a conventional BCS-type superconductor. Anomalous lattice contributions to specific heat at low temperature are also reported, which may come from nearly localized phonon modes associated with the rattling of the alkali metal ions weakly bound in an oversized cage formed by OsO6 octahedra.
Resistivity and specific heat have been measured on a single crystalline sample of the beta-pyrochlore oxide superconductor, KOs2O6. It is found that a second peak in specific heat, which may evidence an unknown phase transition, appears around Tp ~
We report the results of 87Rb NMR measurements on RbOs2O6, a new member of the family of the superconducting pyrochlore-type oxides with a critical temperature Tc = 6.4 K. In the normal state, the nuclear spin-lattice relaxation time T1 obeys the Kor
A novel macroscopically degenerate state called kagome ice, which was recently found in a spin ice compound Dy2Ti2O7 in a magnetic field applied along the [111] direction of the cubic unit cell, is studied by specific heat measurements. The residual
Recently it was discovered that the jump in the specific heat at the superconducting transition in pnictide superconductors is proportional to the superconducting transition temperature to the third power, with the superconducting transition temperat
The low-temperature specific heat of a superconductor Mo3Sb7 with T_c = 2.25 (0.05) K has been measured in magnetic fields up to 5 T. In the normal state, the electronic specific heat coefficient gamma_n, and the Debye temperature Theta_D are found t