ترغب بنشر مسار تعليمي؟ اضغط هنا

Low-temperature specific heat of the superconductor Mo3Sb7

231   0   0.0 ( 0 )
 نشر من قبل Vinh Hung Tran
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The low-temperature specific heat of a superconductor Mo3Sb7 with T_c = 2.25 (0.05) K has been measured in magnetic fields up to 5 T. In the normal state, the electronic specific heat coefficient gamma_n, and the Debye temperature Theta_D are found to be 34.5(2) mJ/molK^2 and 283(5) K, respectively. The enhanced gamma_n value is interpreted due to a narrow Mo-4d band pinned at the Fermi level. The electronic specific heat in the superconducting state can be analyzed in terms a phenomenological two BCS-like gap model with the gap widths 2Delta_1/k_BT_c = 4.0 and 2Delta_2/k_BT_c = 2.5, and relative weights of the mole electronic heat coefficients gamma_1/gamma_n = 0.7 and gamma_2/gamma_n = 0.3. Some characteristic thermodynamic parameters for the studied superconductor, like the specific heat jump at T_c, DeltaC_p(T_c)/gamma_nT_c, the electron-phonon coupling constant,lambda_eph, the upper H_c2 and thermodynamic critical H_c0 fields, the penetration depth, lambda, coherence length xi, and the Ginzburg-Landau parameter kappa are evaluated. The estimated values of parameters like 2Delta/k_BT_c, DeltaC_p(T_c)/gamma_nT_c, N(E_F), and lambda_eph suggest that Mo3Sb7 belongs to intermediate-coupling regime. The electronic band structure calculations indicate that the density of states near the Fermi level is formed mainly by the Mo-4d orbitals and there is no overlapping between the Mo- 4d and Sb-sp orbitals.



قيم البحث

اقرأ أيضاً

Resistivity and specific heat have been measured on a single crystalline sample of the beta-pyrochlore oxide superconductor, KOs2O6. It is found that a second peak in specific heat, which may evidence an unknown phase transition, appears around Tp ~ 7.5 K below the superconducting transition temperature Tc = 9.53 K. Applying magnetic fields up to 14 T, Tc is reduced gradually down to 7.1 K, while Tp is raised a little and becomes even higher than Tc at 14 T, which implies that the second anomaly is not associated directly with the superconductivity. It is demonstrated, however, that there is significant communication between the two anomalies, suggesting that they come from the same electrons. It is also reported that the Sommerfeld coefficient ? in KOs2O6 is possibly much larger than in other members of beta-pyrochlore oxide superconductors, RbOs2O6 (Tc = 6.3 K) and CsOs2O6 (Tc = 3.3 K).
We have investigated the field-angle variation of the specific heat C(H, phi, theta) of the heavy-fermion superconductor UPt3 at low temperatures T down to 50 mK, where phi and theta denote the azimuthal and polar angles of the magnetic field H, resp ectively. For T = 88 mK, C(H, theta=90) increases proportionally to H^{1/2} up to nearly the upper critical field Hc2, indicating the presence of line nodes. By contrast, C(H, theta=0) deviates upward from the H^{1/2} dependence for (H/Hc2)^{1/2} > 0.5. This behavior can be related to the suppression of Hc2 along the c direction, whose origin has not been resolved yet. Our data show that the unusual Hc2 limit becomes marked only when theta is smaller than 30. In order to explore the possible vertical line nodes in the gap structure, we measured the phi dependence of C in wide T and H ranges. However, we did not observe any in-plane angular oscillation of C within the accuracy of dC/C~0.5%. This result implies that field-induced excitations of the heavy quasiparticles occur isotropically with respect to phi, which is apparently contrary to the recent finding of a twofold thermal-conductivity oscillation.
We report ac susceptibility measurements of polycrystalline CePt_3Si down to 60 mK and in applied fields up to 9 T. In zero field, a full Meissner state emerges at temperatures T/Tc < 0.3, where Tc=0.65 K is the onset transition temperature. Though t ransport measurements show a relatively high upper critical field Bc2 ~ 4-5 T, the low temperature susceptibility, chi, is quite fragile to applied field, with chi diminishing rapidly in fields of a few kG. Interestingly, the field dependence of chi is well described by the power law, 4pichi=(B/B_c)^{1/2}, where Bc is the field at which the onset of resistance is observed in transport measurements.
We present a detailed study of the quasiparticle contribution to the low-temperature specific heat of an extreme type-II superconductor at high magnetic fields. Within a T-matrix approximation for the self-energies in the mixed state of a homogeneous superconductor, the electronic specific heat is a linear function of temperature with a linear-$T$ coefficient $gamma_s(H)$ being a nonlinear function of magnetic field $H$. In the range of magnetic fields $Hagt (0.15-0.2)H_{c2}$ where our theory is applicable, the calculated $gamma_s(H)$ closely resembles the experimental data for the borocarbide superconductor YNi$_2$B$_2$C.
We report specific heat under different magnetic fields for recently discovered quasi-one dimensional Nb2PdS5 superconductor. The studied compound is superconducting below 6 K. Nb2PdS5 is quite robust against magnetic field with dHc/dT of -42 kOe/K. The estimated upper critical field [Hc2(0)] is 190 kOe, clearly surpassing the Pauli-paramagnetic limit of 1.84Tc. Low temperature heat capacity in superconducting state of Nb2PdS5 under different magnetic fields showed s-wave superconductivity with two different gaps. Two quasi-linear slopes in Somerfield-coefficient as a function of applied magnetic field and two band behavior of the electronic heat capacity demonstrate that Nb2PdS5 is a multiband su-perconductor in weak coupling limit with deltagamma/deltaTc=0.9.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا