ﻻ يوجد ملخص باللغة العربية
We study the transition between the strong and weak disorder regimes in the scaling properties of the average optimal path $ell_{rm opt}$ in a disordered ErdH{o}s-Renyi (ER) random network and scale-free (SF) network. Each link $i$ is associated with a weight $tau_iequivexp(a r_i)$, where $r_i$ is a random number taken from a uniform distribution between 0 and 1 and the parameter $a$ controls the strength of the disorder. We find that for any finite $a$, there is a crossover network size $N^*(a)$ at which the transition occurs. For $N ll N^*(a)$ the scaling behavior of $ell_{rm opt}$ is in the strong disorder regime, with $ell_{rm opt} sim N^{1/3}$ for ER networks and for SF networks with $lambda ge 4$, and $ell_{rm opt} sim N^{(lambda-3)/(lambda-1)}$ for SF networks with $3 < lambda < 4$. For $N gg N^*(a)$ the scaling behavior is in the weak disorder regime, with $ell_{rm opt}simln N$ for ER networks and SF networks with $lambda > 3$. In order to study the transition we propose a measure which indicates how close or far the disordered network is from the limit of strong disorder. We propose a scaling ansatz for this measure and demonstrate its validity. We proceed to derive the scaling relation between $N^*(a)$ and $a$. We find that $N^*(a)sim a^3$ for ER networks and for SF networks with $lambdage 4$, and $N^*(a)sim a^{(lambda-1)/(lambda-3)}$ for SF networks with $3 < lambda < 4$.
We derive the spectral properties of adjacency matrix of complex networks and of their Laplacian by the replica method combined with a dynamical population algorithm. By assuming the order parameter to be a product of Gaussian distributions, the pres
We present a thorough inspection of the dynamical behavior of epidemic phenomena in populations with complex and heterogeneous connectivity patterns. We show that the growth of the epidemic prevalence is virtually instantaneous in all networks charac
In this chapter we discuss how the results developed within the theory of fractals and Self-Organized Criticality (SOC) can be fruitfully exploited as ingredients of adaptive network models. In order to maintain the presentation self-contained, we fi
We studied, both analytically and numerically, complex excitable networks, in which connections are time dependent and some of the nodes remain silent at each time step. More specifically, (a) there is a heterogenous distribution of connection weight
The vertex-cover problem on the Hanoi networks HN3 and HN5 is analyzed with an exact renormalization group and parallel-tempering Monte Carlo simulations. The grand canonical partition function of the equivalent hard-core repulsive lattice-gas proble