ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-Organization and Complex Networks

197   0   0.0 ( 0 )
 نشر من قبل Diego Garlaschelli
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this chapter we discuss how the results developed within the theory of fractals and Self-Organized Criticality (SOC) can be fruitfully exploited as ingredients of adaptive network models. In order to maintain the presentation self-contained, we first review the basic ideas behind fractal theory and SOC. We then briefly review some results in the field of complex networks, and some of the models that have been proposed. Finally, we present a self-organized model recently proposed by Garlaschelli et al. [Nat. Phys. 3, 813 (2007)] that couples the fitness network model defined by Caldarelli et al. [Phys. Rev. Lett. 89, 258702 (2002)] with the evolution model proposed by Bak and Sneppen [Phys. Rev. Lett. 71, 4083 (1993)] as a prototype of SOC. Remarkably, we show that the results obtained for the two models separately change dramatically when they are coupled together. This indicates that self-organized networks may represent an entirely novel class of complex systems, whose properties cannot be straightforwardly understood in terms of what we have learnt so far.



قيم البحث

اقرأ أيضاً

101 - P. Boolchand 2005
Network glasses are the physical prototype for many self-organized systems, ranging from proteins to computer science. Conventional theories of gases, liquids, and crystals do not account for the strongly material-selective character of the glass-for ming tendency, the phase diagrams of glasses, or their optimizable properties. A new topological theory, only 25 years old, has succeeded where conventional theories have failed. It shows that (probably all slowly quenched) glasses, including network glasses, are the result of the combined effects of a few simple mechanisms. These glass-forming mechanisms are topological in nature, and have already been identified for several important glasses, including chalcogenide alloys, silicates (window glass, computer chips), and proteins.
172 - Wei-Xing Zhou 2006
Song, Havlin and Makse (2005) have recently used a version of the box-counting method, called the node-covering method, to quantify the self-similar properties of 43 cellular networks: the minimal number $N_V$ of boxes of size $ell$ needed to cover a ll the nodes of a cellular network was found to scale as the power law $N_V sim (ell+1)^{-D_V}$ with a fractal dimension $D_V=3.53pm0.26$. We propose a new box-counting method based on edge-covering, which outperforms the node-covering approach when applied to strictly self-similar model networks, such as the Sierpinski network. The minimal number $N_E$ of boxes of size $ell$ in the edge-covering method is obtained with the simulated annealing algorithm. We take into account the possible discrete scale symmetry of networks (artifactual and/or real), which is visualized in terms of log-periodic oscillations in the dependence of the logarithm of $N_E$ as a function of the logarithm of $ell$. In this way, we are able to remove the bias of the estimator of the fractal dimension, existing for finite networks. With this new methodology, we find that $N_E$ scales with respect to $ell$ as a power law $N_E sim ell^{-D_E}$ with $D_E=2.67pm0.15$ for the 43 cellular networks previously analyzed by Song, Havlin and Makse (2005). Bootstrap tests suggest that the analyzed cellular networks may have a significant log-periodicity qualifying a discrete hierarchy with a scaling ratio close to 2. In sum, we propose that our method of edge-covering with simulated annealing and log-periodic sampling minimizes the significant bias in the determination of fractal dimensions in log-log regressions.
238 - Ginestra Bianconi 2008
We derive the spectral properties of adjacency matrix of complex networks and of their Laplacian by the replica method combined with a dynamical population algorithm. By assuming the order parameter to be a product of Gaussian distributions, the pres ent theory provides a solution for the non linear integral equations for the spectra density in random matrix theory of the spectra of sparse random matrices making a step forward with respect to the effective medium approximation (EMA) . We extend these results also to weighted networks with weight-degree correlations
We studied, both analytically and numerically, complex excitable networks, in which connections are time dependent and some of the nodes remain silent at each time step. More specifically, (a) there is a heterogenous distribution of connection weight s and, depending on the current degree of order, some connections are reinforced/weakened with strength Phi on short-time scales, and (b) only a fraction rho of nodes are simultaneously active. The resulting dynamics has attractors which, for a range of Phi values and rho exceeding a threshold, become unstable, the instability depending critically on the value of rho. We observe that (i) the activity describes a trajectory in which the close neighborhood of some of the attractors is constantly visited, (ii) the number of attractors visited increases with rho, and (iii) the trajectory may change from regular to chaotic and vice versa as rho is, even slightly modified. Furthermore, (iv) time series show a power-law spectra under conditions in which the attractors space is most efficiently explored. We argue on the possible qualitative relevance of this phenomenology to networks in several natural contexts.
A Monte Carlo method is used in order to simulate the competition between the molecular relaxation and crystallization times in the formation of a glass. The results show that nucleation is avoided during supercooling and produce self-organization in the sense of the rigidity theory, where the number of geometrical constraints due to bonding and excluded volume are compared with the degress of freedom available to the system. Following this idea, glass transitions were obtained by producing self-organization, and in the case of geometrical frustration, self-organization is naturally observed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا