ﻻ يوجد ملخص باللغة العربية
The dynamics of electrons in the presence of a positive ion is considered for conditions of weak electron-electron couping but strong electron-ion coupling. The equilibrium electron density and electric field time correlation functions are evaluated for semi-classical conditions using a classical statistical mechanics with a regularized electron-ion interaction for MD simulation. The theoretical analysis for the equilibrium state is obtained from the corresponding nonlinear Vlasov equation. Time correlation functions for the electrons are determined from the linearized Vlasov equation. The resulting electron dynamics is described in terms of a distribution of single electron-ion trajectories screened by an inhomogeneous electron gas dielectric function. The results are applied to calculation of the autocorrelation function for the electron electric field at the ion for $ 0leq Zleq 40$, including conditions of strong electron-ion coupling. The electron stopping power and self-diffusion coefficient are determined from these results, and all properties calculated are compared with those obtained from semi-classical molecular dynamics simulation. The agreement with semi-classical MD simulation is found to be reasonable. The theoretical description provides an instructive interpretation for the strong electron-ion results.
We investigate the evolution of a particle in a Lorentz gas where the background scatters move and collide with each other. As in the standard Lorentz gas, we assume that the particle is negligibly light in comparison with scatters. We show that the
We study dynamics and thermodynamics of ion channels, considered as effective 1D Coulomb systems. The long range nature of the inter-ion interactions comes about due to the dielectric constants mismatch between the water and lipids, confining the ele
Stochastic Langevin dynamics has been traditionally used as a tool to describe non-equilibrium processes. When utilized in systems with collective modes, traditional Langevin dynamics relaxes all modes indiscriminately, regardless of their wavelength
We investigate the effects of dissipation on the quantum dynamics of many-body systems at quantum transitions, especially considering those of the first order. This issue is studied within the paradigmatic one-dimensional quantum Ising model. We anal
We study the effect of noise on the axial mode of an electron in a Penning trap under parametric-resonance conditions. Our approach, based on the application of averaging techniques to the description of the dynamics, provides an understanding of the