ترغب بنشر مسار تعليمي؟ اضغط هنا

Stochastic dynamics of an electron in a Penning trap: phase flips correlated with amplitude collapses and revivals

81   0   0.0 ( 0 )
 نشر من قبل Jesus Plata
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the effect of noise on the axial mode of an electron in a Penning trap under parametric-resonance conditions. Our approach, based on the application of averaging techniques to the description of the dynamics, provides an understanding of the random phase flips detected in recent experiments. The observed correlation between the phase jumps and the amplitude collapses is explained. Moreover, we discuss the actual relevance of noise color to the identified phase-switching mechanism. Our approach is then generalized to analyze the persistence of the stochastic phase flips in the dynamics of a cloud of N electrons. In particular, we characterize the detected scaling of the phase-jump rate with the number of electrons.



قيم البحث

اقرأ أيضاً

We investigate the impact of a rotating wall potential on perpendicular laser cooling in a Penning ion trap. By including energy exchange with the rotating wall, we extend previous Doppler laser cooling theory and show that low perpendicular temperat ures are more readily achieved with a rotating wall than without. Detailed numerical studies determine optimal operating parameters for producing low temperature, stable 2-dimensional crystals, important for quantum information processing experiments employing Penning traps.
Stochastic resetting, a diffusive process whose amplitude is reset to the origin at random times, is a vividly studied strategy to optimize encounter dynamics, e.g., in chemical reactions. We here generalize the resetting step by introducing a random resetting amplitude, such that the diffusing particle may be only partially reset towards the trajectory origin, or even overshoot the origin in a resetting step. We introduce different scenarios for the random-amplitude stochastic resetting process and discuss the resulting dynamics. Direct applications are geophysical layering (stratigraphy) as well as population dynamics or financial markets, as well as generic search processes.
292 - G. Ciaramicoli , I. Marzoli , 2010
The new generation of planar Penning traps promises to be a flexible and versatile tool for quantum information studies. Here, we propose a fully controllable and reversible way to change the typical trapping harmonic potential into a double-well pot ential, in the axial direction. In this configuration a trapped particle can perform coherent oscillations between the two wells. The tunneling rate, which depends on the barrier height and width, can be adjusted at will by varying the potential difference applied to the trap electrodes. Most notably, tunneling rates in the range of kHz are achievable even with a trap size of the order of 100 microns.
We demonstrate a novel detection method for the cyclotron resonance frequency of an electron plasma in a Penning-Malmberg trap. With this technique, the electron plasma is used as an in situ diagnostic tool for measurement of the static magnetic fiel d and the microwave electric field in the trap. The cyclotron motion of the electron plasma is excited by microwave radiation and the temperature change of the plasma is measured non-destructively by monitoring the plasmas quadrupole mode frequency. The spatially-resolved microwave electric field strength can be inferred from the plasma temperature change and the magnetic field is found through the cyclotron resonance frequency. These measurements were used extensively in the recently reported demonstration of resonant quantum interactions with antihydrogen.
We study the dynamics of the center of mass of a Brownian particle levitated in a Paul trap. We focus on the overdamped regime in the context of levitodynamics, comparing theory with our numerical simulations and experimental data from a nanoparticle in a Paul trap. We provide an exact analytical solution to the stochastic equation of motion, expressions for the standard deviation of the motion, and thermalization times by using the WKB method under two different limits. Finally, we prove the power spectral density of the motion can be approximated by that of an Ornstein-Uhlenbeck process and use the found expression to calibrate the motion of a trapped particle.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا