ﻻ يوجد ملخص باللغة العربية
The relation between the conductivity tensors of Composite Fermions and electrons is extended to second generation Composite Fermions. It is shown that it crucially depends on the coupling matrix for the Chern-Simons gauge field. The results are applied to a model of interacting Composite Fermions that can explain both the anomalous plateaus in spin polarization and the corresponding maxima in the resistivity observed in recent transport experiments.
We develop a phenomenological description of the nu=5/2 quantum Hall state in which the Halperin-Lee-Read theory of the half-filled Landau level is combined with a p-wave pairing interaction between composite fermions (CFs). The electromagnetic respo
We construct an action for the composite Dirac fermion consistent with symmetries of electrons projected to the lowest Landau level. First we construct a generalization of the $g=2$ electron that gives a smooth massless limit on any curved background
We report magnetotransport measurements of fractional quantum Hall states in an AlAs quantum well around Landau level filling factor nu = 3/2, demonstrating that the quasiparticles are composite Fermions (CFs) with a valley degree of freedom. By moni
The quantum Hall superfluid is presently the only viable candidate for a realization of quasiparticles with fractional Berry phase statistics. For a simple vortex excitation, relevant for a subset of fractional Hall states considered by Laughlin, non
The response of composite Fermions to large wavevector scattering has been studied through phonon drag measurements. While the response retains qualitative features of the electron system at zero magnetic field, notable discrepancies develop as the s