ﻻ يوجد ملخص باللغة العربية
We show how to calculate the magnetic-field and sheet-current distributions for a thin-film superconducting annular ring (inner radius a, outer radius b, and thickness d<<a) when either the penetration depth obeys lambda < d/2 or, if lambda > d/2, the two-dimensional screening length obeys Lambda = 2 lambda^2/d << a for the following cases: (a) magnetic flux trapped in the hole in the absence of an applied magnetic field, (b) zero magnetic flux in the hole when the ring is subjected to an applied magnetic field, and (c) focusing of magnetic flux into the hole when a magnetic field is applied but no net current flows around the ring. We use a similar method to calculate the magnetic-field and sheet-current distributions and magnetization loops for a thin, bulk-pinning-free superconducting disk (radius b) containing a dome of magnetic flux of radius a when flux entry is impeded by a geometrical barrier.
We have measured the dynamics of individual magnetic fluxoids entering and leaving photolithographically patterned thin film rings of the underdoped high-temperature superconductor Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$, using a variable sample temperatur
The discovery of superconductivity at 39 K in magnesium diboride offers the possibility of a new class of low-cost, high-performance superconducting materials for magnets and electronic applications. With twice the critical temperature of Nb_3Sn and
We have observed spontaneous fluxoid generation in thin-film rings of the amorphous superconductor Mo$_3$Si, cooled through the normal-superconducting transition, as a function of quench rate and externally applied magnetic field, using a variable sa
A vortex crossing a thin-film superconducting strip from one edge to the other, perpendicular to the bias current, is the dominant mechanism of dissipation for films of thickness d on the order of the coherence length XI; and of width w much narrower
For any practical superconductor the magnitude of the critical current density, $J_textrm{c}$, is crucially important. It sets the upper limit for current in the conductor. Usually $J_textrm{c}$ falls rapidly with increasing external magnetic field b