ﻻ يوجد ملخص باللغة العربية
We investigated the nematic to smectic transition undergone by parallel hard spherocylinders in the framework provided by the residual multi-particle entropy (RMPE) formalism. The RMPE is defined as the sum of all contributions to the configurational entropy of the fluid which arise from density correlations involving more than two particles. The vanishing of the RMPE signals the structural changes which take place in the system for increasing pressures. Monte Carlo simulations carried out for parallel hard spherocylinders show that such a one-phase ordering criterion accurately predicts also the nematic-smectic transition threshold notwithstanding the almost continuous character of the transition. A similar quantitative correspondence had been already noted in the case of an isotropic fluid of freely rotating hard spherocylinders undergoing a transition to a nematic, smectic or solid phase. The present analysis confirms the flexibility of the RMPE approach as a practical and reliable tool for detecting the formation of mesophases in model liquid-crystal systems.
Hard spherocylinders (cylinders of length $L$ and diameter $D$ capped at both ends with two hemispheres) provide a suitable model for investigating entropy-driven, mesophase formations in real colloidal fluids that are composed of rigid rodlike molec
Using computer simulations we investigate the microscopic structure of the singular director field within a nematic droplet. As a theoretical model for nematic liquid crystals we take hard spherocylinders. To induce an overall topological charge, the
A new Monte Carlo approach is proposed to investigate the fluid-solid phase transition of the polydisperse system. By using the extended ensemble, a reversible path was constructed to link the monodisperse and corresponding polydisperse system. Once
We design generative neural networks that generate Monte Carlo configurations with complete absence of autocorrelation and from which direct measurements of physical observables can be employed, irrespective of the system locating at the classical cr
Modification of the hard jet substructure in terms of the Soft Drop jet grooming algorithm observables is studied for three different scenarios of jet quenching in a quark-gluon plasma: i) an explicit enhancement of the parton splitting functions, ii