ﻻ يوجد ملخص باللغة العربية
Hard spherocylinders (cylinders of length $L$ and diameter $D$ capped at both ends with two hemispheres) provide a suitable model for investigating entropy-driven, mesophase formations in real colloidal fluids that are composed of rigid rodlike molecules. We performed extensive Monte Carlo simulations of this model fluid for elongations in the range $3 leq L/D leq 5$ and up to $L/D = 20$, in order to investigate the relative importance of translational and orientational correlations allowing for the emergence of nematic or smectic order in the framework of the so-called residual multi-particle entropy (RMPE). The vanishing of this quantity, which includes the re-summed contributions of all spatial correlations involving more than two particles, signals the structural changes which take place, at increasing densities, in the isotropic fluid. We found that the ordering thresholds detected through the zero-RMPE condition systematically correlate with the corresponding phase-transition points, whatever the nature of the higher-density phase coexisting with the isotropic fluid.
We investigated the nematic to smectic transition undergone by parallel hard spherocylinders in the framework provided by the residual multi-particle entropy (RMPE) formalism. The RMPE is defined as the sum of all contributions to the configurational
Using computer simulations we investigate the microscopic structure of the singular director field within a nematic droplet. As a theoretical model for nematic liquid crystals we take hard spherocylinders. To induce an overall topological charge, the
We present computer simulations of long thin hard spherocylinders in a narrow planar slit. We observe a transition from the isotropic to a nematic phase with quasi-long-range orientational order upon increasing the density. This phase transition is i
We present a model for the combined nematic and `smectic or stripe-like orders seen in recent scanning tunneling microscopy (STM) experiments in cuprates. We model the stripe order as an electronic charge density wave with associated Peierls distorti
In a quenched mesoscopic fluid, modelling transport processes at high densities, we perform computer simulations of the single particle energy autocorrelation function C_e(t), which is essentially a return probability. This is done to test the predic