ترغب بنشر مسار تعليمي؟ اضغط هنا

Universal behavior of transition temperatures Vs residual resistivity in Mn site doped La-Ca-Mn-O perovskites

80   0   0.0 ( 0 )
 نشر من قبل Seetha Lakshmi
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss here a comparative study of the role of local structure and/or nature of local magnetic coupling on the electrical transport properties of Mn site substituted La-Ca-Mn-O perovskites. Particular emphasis is being paid to explore the strong correlation between the insulator-metal transition (TIM) and the residual resistivity (rhoo) upon substitution. There exists an inverse relationship between ro and TIM in the compounds under present discussion. Best fit for TIM Vs ro could be obtained for the compounds understudy to a first order exponential decay with a functional form TIM = TIMO + Aexp (-rhoo/t) than that to a power law. There is a previous report wherein the similar correlation in the case of rare earth substituted manganites has been attributed to Anderson-type electron localization. The universal behavior as has been observed between ro and TIM irrespective of the electronic, magnetic and chemical nature of the substituting elements in the Mn site substituted La-Ca-Mn-O perovskites needs a rigorous theoretical investigation.



قيم البحث

اقرأ أيضاً

Through analysis of variable temperature neutron powder diffraction data, we present solutions for the magnetic structures of SrMn$_7$O$_{12}$, CdMn$_7$O$_{12}$, and PbMn$_7$O$_{12}$ in all long-range ordered phases. The three compounds were found to have magnetic structures analogous to that reported for CaMn$_7$O$_{12}$. They all feature a higher temperature lock-in phase with emph{commensurate} magneto-orbital coupling, and a delocked, multi-textbf{k} magnetic ground state where emph{incommensurate} magneto-orbital coupling gives rise to a constant-moment magnetic helix with modulated spin helicity. CdMn$_7$O$_{12}$ represents a special case in which the orbital modulation is commensurate with the crystal lattice and involves stacking of fully and partially polarized orbital states. Our results provide a robust confirmation of the phenomenological model for magneto-orbital coupling previously presented for CaMn$_7$O$_{12}$. Furthermore, we show that the model is universal to the $A^{2+}$ quadruple perovskite manganites synthesised to date, and that it is tunable by selection of the $A$-site ionic radius.
177 - H. Wadati , K. Kato , Y. Wakisaka 2011
We investigated the electronic structure of layered Mn oxide Bi3Mn4O12(NO3) with a Mn honeycomb lattice by x-ray absorption spectroscopy. The valence of Mn was determined to be 4+ with a small charge-transfer energy. We estimated the values of supere xchange interactions up to the fourth nearest neighbors (J1, J2, J3, and J4) by unrestricted Hartree-Fock calculations and a perturbation method. We found that the absolute values of J1 through J4 are similar with positive (antiferromagnetic) J1 and J4, and negative (ferromagnetic) J2 and J3, due to Mn-O-O-Mn pathways activated by the smallness of charge-transfer energy. The negative J3 provides magnetic frustration in the honeycomb lattice to prevent long-range ordering.
Raman spectroscopy is employed to probe directly the soft rotation and tilting modes, which are two primary order parameters predicted in the hybrid improper ferroelectric material Ca$_3$Mn$_2$O$_7$. We observe a giant softening of the 107-cm$^{-1}$ octahedron tilting mode by 26~cm$^{-1}$, on heating through the structural transition from a ferroelectric to paraelectric orthorhombic phase. This is contrasted by a small softening of the 150-cm$^{-1}$ rotational mode by 6~cm$^{-1}$. In the intermediate phase, the competing soft modes with different symmetries coexist, bringing about many-faceted anomalies in spin excitations and lattice vibrations. Our work demonstrates that the soft rotation and tilt patterns, relying on a phase-transition path, are a key factor in determining ferroelectric, magnetic, and lattice properties of Ca$_3$Mn$_2$O$_7$.
We have studied the barocaloric effect (BCE) in the geometrically frustrated antiferromagnet Mn$_{3}$NiN across the N{e}el transition temperature. Experimentally we find a larger barocaloric entropy change by a factor of 1.6 than that recently discov ered in the isostructural antiperovskite Mn$_{3}$GaN despite greater magnetovolume coupling in the latter. By fitting experimental data to theory we show that the larger BCE of Mn$_{3}$NiN originates from multi-site exchange interactions amongst the local Mn magnetic moments and their coupling with itinerant electron spins. Using this framework, we discuss the route to maximise the BCE in the wider Mn$_{3}$AN family.
We study magnetic-field-dependent nonresonant microwave absorption and dispersion in thin La$_{0.7}$Sr$_{0.3}$MnO$_{3}$ films and show that it originates from the colossal magnetoresistance. We develop the model for magnetoresistance of a thin ferrom agnetic film in oblique magnetic field. The model accounts fairly well for our experimental findings, as well as for results of other researchers. We demonstrate that nonresonant microwave absorption is a powerful technique that allows contactless measurement of magnetic properties of thin films, including magnetoresistance, anisotropy field and coercive field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا