ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-site exchange enhanced barocaloric response in Mn$_{3}$NiN

92   0   0.0 ( 0 )
 نشر من قبل David Boldrin
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have studied the barocaloric effect (BCE) in the geometrically frustrated antiferromagnet Mn$_{3}$NiN across the N{e}el transition temperature. Experimentally we find a larger barocaloric entropy change by a factor of 1.6 than that recently discovered in the isostructural antiperovskite Mn$_{3}$GaN despite greater magnetovolume coupling in the latter. By fitting experimental data to theory we show that the larger BCE of Mn$_{3}$NiN originates from multi-site exchange interactions amongst the local Mn magnetic moments and their coupling with itinerant electron spins. Using this framework, we discuss the route to maximise the BCE in the wider Mn$_{3}$AN family.



قيم البحث

اقرأ أيضاً

We have studied the anomalous Hall effect (AHE) in strained thin films of the frustrated antiferromagnet Mn$_{3}$NiN. The AHE does not follow the conventional relationships with magnetization or longitudinal conductivity and is enhanced relative to t hat expected from the magnetization in the antiferromagnetic state below $T_{mathrm{N}} = 260$,K. This enhancement is consistent with origins from the non-collinear antiferromagnetic structure, as the latter is closely related to that found in Mn$_{3}$Ir and Mn$_{3}$Pt where a large AHE is induced by the Berry curvature. As the Berry phase induced AHE should scale with spin-orbit coupling, yet larger AHE may be found in other members of the chemically flexible Mn$_{3}A$N structure.
The structure, electronic, and magnetic properties of the Mo-doped perovskite La0.7Ca0.3Mn1-xMoxO3 (x < 0.1) have been studied. A significant increase in resistivity and lattice parameters were observed with Mo doping. A marginal decrease in the Curi e temperature Tc and the associated metal-insulator transition Tp were observed. Magnetization data reveal that long-range ferromagnetic ordering persists in all samples studied and the saturation moment decreases linearly as x increases. Enhancement in magnetoresistance at near Tc in the Mo-doped compounds with an optimum doping value x = 0.05 was observed. The overall experimental results can be explained by considering the induced Mn2+ ions with Mo6+ in the Mo-doped systems, with the strong FM coupling between Mn4+/2+- O - Mn3+.
120 - P. Orgiani , A. Galdi , C. Aruta 2010
Double-exchange mechanisms in RE$_{1-x}$AE$_{x}$MnO$_{3}$ manganites (where RE is a trivalent rare-earth ion and AE is a divalent alkali-earth ion) relies on the strong exchange interaction between two Mn$^{3+}$ and Mn$^{4+}$ ions through interfiling oxygen 2p states. Nevertheless, the role of RE and AE ions has ever been considered silent with respect to the DE conducting mechanisms. Here we show that a new path for DE-mechanism is indeed possible by partially replacing the RE-AE elements by Mn$^{2+}$-ions, in La-deficient La$_{x}$MnO$_{3-delta}$ thin films. X-ray absorption spectroscopy demonstrated the relevant presence of Mn$^{2+}$ ions, which is unambiguously proved to be substituted at La-site by Resonant Inelastic X-ray Scattering. Mn$^{2+}$ is proved to be directly correlated to the enhanced magneto-transport properties because of an additional hopping mechanism trough interfiling Mn$^{2+}$-ions, theoretically confirmed by calculations within the effective single band model. The very idea to use Mn$^{2+}$ both as a doping element and an ions electronically involved in the conduction mechanism, has never been foreseen, revealing a new phenomena in transport properties of manganites. More important, such a strategy might be also pursed in other strongly correlated materials.
177 - D. Szaller , K. Szasz , S. Bordacs 2020
We investigated the static and dynamic magnetic properties of the polar ferrimagnet Mn$_2$Mo$_3$O$_8$ in three magnetically ordered phases via magnetization, magnetic torque, and THz absorption spectroscopy measurements. The observed magnetic field d ependence of the spin-wave resonances, including Brillouin zone-center and zone-boundary excitations, magnetization, and torque, are well described by an extended two-sublattice antiferromagnetic classical mean-field model. In this orbitally quenched system, the competing weak easy-plane and easy-axis single-ion anisotropies of the two crystallographic sites are determined from the model and assigned to the tetra- and octahedral sites, respectively, by ab initio calculations.
We use neutron reflectometry to investigate the interlayer exchange coupling between Ga$_{0.97}$Mn$_{0.03}$As ferromagnetic semiconductor layers separated by non-magnetic Be-doped GaAs spacers. Polarized neutron reflectivity measured below the Curie temperature of Ga$_{0.97}$Mn$_{0.03}$As reveals a characteristic splitting at the wave vector corresponding to twice the multilayer period, indicating that the coupling between the ferromagnetic layers are antiferromagnetic (AFM). When the applied field is increased to above the saturation field, this AFM coupling is suppressed. This behavior is not observed when the spacers are undoped, suggesting that the observed AFM coupling is mediated by charge carriers introduced via Be doping. The behavior of magnetization of the multilayers measured by DC magnetometry is consistent with the neutron reflectometry results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا