ترغب بنشر مسار تعليمي؟ اضغط هنا

Soft X-ray Magnetic Circular Dichroism of c(2x2) CuMn Ordered Surface Alloy

76   0   0.0 ( 0 )
 نشر من قبل Akio Kimura
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Mn 2p soft X-ray absorption (XAS) spectroscopy excited with circularly polarized synchrotron radiation has been applied to a new class of material, c(2x2)CuMn/Cu(001) two-dimensional ordered surface alloy. A significant X-ray magnetic circular dichroism (XMCD) signal has been clearly observed at T=25K, indicating the existence of the ferromagnetic state under the external magnetic field of 1.4 Tesla. The lineshape analyses of the XAS and XMCD spectra clearly show that the Mn 3d state is rather localized and has a high spin magnetic moment due to its half-filled character.



قيم البحث

اقرأ أيضاً

In this study, X-ray absorption spectroscopy (XAS) experiments for Ni45Co5Mn36.7In13.3 metamagnetic shape memory alloy were performed under high magnetic fields up to 12 T using a pulsed magnet. Field-induced reverse transformation to austenite phase caused considerable changes in the magnetic circular dichroism (MCD) signals and the magnetic moments of the ferromagnetic coupling between Mn, Ni, and Co were determined. The spin magnetic moment, Mspin, and orbital magnetic moment, Morb, of Mn atom in the induced austenite ferromagnetic phase, estimated based on the magneto-optical sum rule, were 3.2 and 0.13 {mu}B, respectively, resulting in an Morb / Mspin ratio of 0.04. In the element-specific magnetization curves recorded at 150 K, metamagnetic behavior associated with the field-induced reverse transformation is clearly observed and reverse transformation finishing magnetic field and martensitic transformation starting magnetic field are detected. There was almost no difference in the magnetically averaged XAS spectrum for Mn-L2,3 edges between in the martensite and in the magnetic field-induced austenite phases, however, it was visible for Ni, indicating that Ni 3d-electrons mainly contribute to martensitic transformation.
We performed a soft x-ray magnetic circular dichroism (XMCD) study of a Zn$_{1-x}$V$_x$O thin film which showed small ferromagnetic moment. Field and temperature dependences of V 2$p$ XMCD signals indicated the coexistence of Curie-Weiss paramagnetic , antiferromagnetic, and possibly ferromagnetic V ions, quantitatively consistent with the magnetization measurements. We attribute the paramagnetic signal to V ions substituting Zn sites which are somewhat elongated along the c-axis.
We have investigated the electronic structure of ZnO:Mn and ZnO:Mn,N thin films using x-ray magnetic circular dichroism (XMCD) and resonance-photoemission spectroscopy. From the Mn 2$p$$rightarrow3d$ XMCD results, it is shown that, while XMCD signals only due to paramagnetic Mn$^{2+}$ ions were observed in ZnO:Mn, nonmagnetic, paramagnetic and ferromagnetic Mn$^{2+}$ ions coexist in ZnO:Mn,N. XMCD signals of ZnO:Mn,N revealed that the localized Mn$^{2+}$ ground state and Mn$^{2+}$ state hybridized with ligand hole coexisted, implying $p$-$d$ exchange coupling. In the valence-band spectra, spectral weight near the Fermi level was suppressed, suggesting that interaction between magnetic moments in ZnO:Mn,N has localized nature.
469 - K. Ikeda , T. Seki , G. Shibata 2017
The strong perpendicular magnetic anisotropy of $L{rm1_0}$-ordered FePt has been the subject of extensive studies for a long time. However, it is not known which element, Fe or Pt, mainly contributes to the magnetic anisotropy energy (MAE). We have i nvestigated the anisotropy of the orbital magnetic moments of Fe 3$d$ and Pt 5$d$ electrons in $L{rm1_0}$-ordered FePt thin films by Fe and Pt $L_{2,3}$-edge x-ray magnetic circular dichroism (XMCD) measurements for samples with various degrees of long-range chemical order $S$. Fe $L_{2,3}$-edge XMCD showed that the orbital magnetic moment was larger when the magnetic field was applied perpendicular to the film than parallel to it, and that the anisotropy of the orbital magnetic moment increased with $S$. Pt $L_{2,3}$-edge XMCD also showed that the orbital magnetic moment was smaller when the magnetic field was applied perpendicular to the film than parallel to it, opposite to the Fe $L_{2,3}$-edge XMCD results although the anisotropy of the orbital magnetic moment increases with $S$ like the Fe edge. These results are qualitatively consistent with the first-principles calculation by Solovyev ${it et al.}$ [Phys. Rev. B $bf{52}$, 13419 (1995).], which also predicts the dominant contributions of Pt 5$d$ to the magnetic anisotropy energy rather than Fe 3$d$ due to the strong spin-orbit coupling and the small spin splitting of the Pt 5$d$ bands in $L{rm1_0}$-ordered FePt.
Electrolyte-based transistors utilizing ionic liquids/gels have been highly successful in the study of charge-density-controlled phenomena, particularly in oxides. Experimental probes beyond transport have played a significant role, despite challenge s to their application in electric double-layer transistors. Here, we demonstrate application of synchrotron soft X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) as operando probes of the charge state and magnetism in ion-gel-gated ferromagnetic perovskite films. Electrochemical response via oxygen vacancies at positive gate bias in LaAlO$_3$(001)/La$_{0.5}$Sr$_{0.5}$CoO$_{3-{delta}}$ is used as a test case. XAS/XMCD measurements of 4-25 unit-cell-thick films first probe the evolution of hole doping (from the O K-edge pre-peak) and ferromagnetism (at the Co L-edges), to establish a baseline. Operando soft XAS/XMCD of electrolyte-gated films is then demonstrated, using optimized spin-coated gels with thickness $sim$1 ${mu}$m, and specific composition. Application of gate voltages up to +4 V is shown to dramatically suppress the O $K$-edge XAS pre-peak intensity and Co $L$-edge XMCD, thus enabling the Co valence and ferromagnetism to be tracked upon gate-induced reduction. Soft XAS and XMCD, with appropriate electrolyte design, are thus established as viable for the operando characterization of electrolyte-gated oxides.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا