ﻻ يوجد ملخص باللغة العربية
Mn 2p soft X-ray absorption (XAS) spectroscopy excited with circularly polarized synchrotron radiation has been applied to a new class of material, c(2x2)CuMn/Cu(001) two-dimensional ordered surface alloy. A significant X-ray magnetic circular dichroism (XMCD) signal has been clearly observed at T=25K, indicating the existence of the ferromagnetic state under the external magnetic field of 1.4 Tesla. The lineshape analyses of the XAS and XMCD spectra clearly show that the Mn 3d state is rather localized and has a high spin magnetic moment due to its half-filled character.
In this study, X-ray absorption spectroscopy (XAS) experiments for Ni45Co5Mn36.7In13.3 metamagnetic shape memory alloy were performed under high magnetic fields up to 12 T using a pulsed magnet. Field-induced reverse transformation to austenite phase
We performed a soft x-ray magnetic circular dichroism (XMCD) study of a Zn$_{1-x}$V$_x$O thin film which showed small ferromagnetic moment. Field and temperature dependences of V 2$p$ XMCD signals indicated the coexistence of Curie-Weiss paramagnetic
We have investigated the electronic structure of ZnO:Mn and ZnO:Mn,N thin films using x-ray magnetic circular dichroism (XMCD) and resonance-photoemission spectroscopy. From the Mn 2$p$$rightarrow3d$ XMCD results, it is shown that, while XMCD signals
The strong perpendicular magnetic anisotropy of $L{rm1_0}$-ordered FePt has been the subject of extensive studies for a long time. However, it is not known which element, Fe or Pt, mainly contributes to the magnetic anisotropy energy (MAE). We have i
Electrolyte-based transistors utilizing ionic liquids/gels have been highly successful in the study of charge-density-controlled phenomena, particularly in oxides. Experimental probes beyond transport have played a significant role, despite challenge