ترغب بنشر مسار تعليمي؟ اضغط هنا

Soft X-ray Absorption Spectroscopy and Magnetic Circular Dichroism as Operando Probes of Complex Oxide Electrolyte Gate Transistors

216   0   0.0 ( 0 )
 نشر من قبل Biqiong Yu
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Electrolyte-based transistors utilizing ionic liquids/gels have been highly successful in the study of charge-density-controlled phenomena, particularly in oxides. Experimental probes beyond transport have played a significant role, despite challenges to their application in electric double-layer transistors. Here, we demonstrate application of synchrotron soft X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) as operando probes of the charge state and magnetism in ion-gel-gated ferromagnetic perovskite films. Electrochemical response via oxygen vacancies at positive gate bias in LaAlO$_3$(001)/La$_{0.5}$Sr$_{0.5}$CoO$_{3-{delta}}$ is used as a test case. XAS/XMCD measurements of 4-25 unit-cell-thick films first probe the evolution of hole doping (from the O K-edge pre-peak) and ferromagnetism (at the Co L-edges), to establish a baseline. Operando soft XAS/XMCD of electrolyte-gated films is then demonstrated, using optimized spin-coated gels with thickness $sim$1 ${mu}$m, and specific composition. Application of gate voltages up to +4 V is shown to dramatically suppress the O $K$-edge XAS pre-peak intensity and Co $L$-edge XMCD, thus enabling the Co valence and ferromagnetism to be tracked upon gate-induced reduction. Soft XAS and XMCD, with appropriate electrolyte design, are thus established as viable for the operando characterization of electrolyte-gated oxides.



قيم البحث

اقرأ أيضاً

We report on x-ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD) studies of the paramagnetic (Mn,Co)-co-doped ZnO and ferromagnetic (Fe,Co)-co-doped ZnO nano-particles. Both the surface-sensitive total-electron-yield mode and the bulk-sensitive total-fluorescence-yield mode have been employed to extract the valence and spin states of the surface and inner core regions of the nano-particles. XAS spectra reveal that significant part of the doped Mn and Co atoms are found in the trivalent and tetravalent state in particular in the surface region while majority of Fe atoms are found in the trivalent state both in the inner core region and surface region. The XMCD spectra show that the Fe$^{3+}$ ions in the surface region give rise to the ferromagnetism while both the Co and Mn ions in the surface region show only paramagnetic behaviors. The transition-metal atoms in the inner core region do not show magnetic signals, meaning that they are antiferromagnetically coupled. The present result combined with the previous results on transition-metal-doped ZnO nano-particles and nano-wires suggest that doped holes, probably due to Zn vacancy formation at the surfaces of the nano-particles and nano-wires, rather than doped electrons are involved in the occurrence of ferromagnetism in these systems.
In this study, X-ray absorption spectroscopy (XAS) experiments for Ni45Co5Mn36.7In13.3 metamagnetic shape memory alloy were performed under high magnetic fields up to 12 T using a pulsed magnet. Field-induced reverse transformation to austenite phase caused considerable changes in the magnetic circular dichroism (MCD) signals and the magnetic moments of the ferromagnetic coupling between Mn, Ni, and Co were determined. The spin magnetic moment, Mspin, and orbital magnetic moment, Morb, of Mn atom in the induced austenite ferromagnetic phase, estimated based on the magneto-optical sum rule, were 3.2 and 0.13 {mu}B, respectively, resulting in an Morb / Mspin ratio of 0.04. In the element-specific magnetization curves recorded at 150 K, metamagnetic behavior associated with the field-induced reverse transformation is clearly observed and reverse transformation finishing magnetic field and martensitic transformation starting magnetic field are detected. There was almost no difference in the magnetically averaged XAS spectrum for Mn-L2,3 edges between in the martensite and in the magnetic field-induced austenite phases, however, it was visible for Ni, indicating that Ni 3d-electrons mainly contribute to martensitic transformation.
75 - A. Kimura , T. Kanbe , T. Xie 2003
Mn 2p soft X-ray absorption (XAS) spectroscopy excited with circularly polarized synchrotron radiation has been applied to a new class of material, c(2x2)CuMn/Cu(001) two-dimensional ordered surface alloy. A significant X-ray magnetic circular dichro ism (XMCD) signal has been clearly observed at T=25K, indicating the existence of the ferromagnetic state under the external magnetic field of 1.4 Tesla. The lineshape analyses of the XAS and XMCD spectra clearly show that the Mn 3d state is rather localized and has a high spin magnetic moment due to its half-filled character.
GdNi is a ferrimagnetic material with a Curie temperature Tc = 69 K which exhibits a large magnetocaloric effect, making it useful for magnetic refrigerator applications. We investigate the electronic structure of GdNi by carrying out x-ray absorptio n spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD) at T = 25 K in the ferrimagnetic phase. We analyze the Gd M$_{4,5}$-edge ($3d$ - $4f$) and Ni L$_{2,3}$-edge ($2p$ - $3d$) spectra using atomic multiplet and cluster model calculations, respectively. The atomic multiplet calculation for Gd M$_{4,5}$-edge XAS indicates that Gd is trivalent in GdNi, consistent with localized $4f$ states. On the other hand, a model cluster calculation for Ni L$_{2,3}$-edge XAS shows that Ni is effectively divalent in GdNi and strongly hybridized with nearest neighbour Gd states, resulting in a $d$-electron count of 8.57. The Gd M$_{4,5}$-edge XMCD spectrum is consistent with a ground state configuration of S = 7/2 and L=0. The Ni L$_{2,3}$-edge XMCD results indicate that the antiferromagnetically aligned Ni moments exhibit a small but finite magnetic moment ( $m_{tot}$ $sim$ 0.12 $mu_B$ ) with the ratio $m_{o}/m_{s}$ $sim$ 0.11. Valence band hard x-ray photoemission spectroscopy shows Ni $3d$ features at the Fermi level, confirming a partially filled $3d$ band, while the Gd $4f$ states are at high binding energies away from the Fermi level. The results indicate that the Ni $3d$ band is not fully occupied and contradicts the charge-transfer model for rare-earth based alloys. The obtained electronic parameters indicate that GdNi is a strongly correlated charge transfer metal with the Ni on-site Coulomb energy being much larger than the effective charge-transfer energy between the Ni $3d$ and Gd $4f$ states.
The relationship between charge and structure dictates the properties of electrochemical systems. For example, reversible Na-ion intercalation - a low-cost alternative to Li-ion technology - often induces detrimental structural phase transformations coupled with charge compensation reactions. However, little is known about the underpinning charge-structure mechanisms because the reduction-oxidation (redox) reactions within coexisting structural phases have so far eluded direct operando investigation. Here, we distinguish x-ray spectra of individual crystalline phases operando during a redox-induced phase transformation in P2-Na2/3Ni1/3Mn2/3O2 - an archetypal layered oxide for sodium-ion batteries. We measure the resonant elastic scattering on the Bragg reflection corresponding to the P2-phase lattice spacing. These resonant spectra become static midway through the sodium extraction in an operando coin cell, while the overall sodium extraction proceeds as evidenced by the X-ray absorption averaging over all electrochemically active Ni atoms. The stop of redox activity in the P2-structure signifies its inability to host Ni4+ ions. The coincident emergence of the O2- structure reveals the rigid link between the local redox and the long-range order during the phase transformation. The structure-selective x-ray spectroscopy thus opens a powerful avenue for resolving the dynamic chemistry of different structural phases in multi-phase electrochemical systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا