ﻻ يوجد ملخص باللغة العربية
In this article, we investigate mean field effects for a bosonic gas harmonically trapped above the transition temperature in the collisionless regime. We point out that those effects can play also a role in low dimensional system. Our treatment relies on the Boltzmann equation with the inclusion of the mean field term. The equilibrium state is first discussed. The dispersion relation for collective oscillations (monopole, quadrupole, dipole modes) is then derived. In particular, our treatment gives the frequency of the monopole mode in an isotropic and harmonic trap in the presence of mean field in all dimensions.
Universal scaling of entanglement estimators of critical quantum systems has drawn a lot of attention in the past. Recent studies indicate that similar universal properties can be found for bipartite information estimators of classical systems near p
For a mean-field classical spin system exhibiting a second-order phase transition in the stationary state, we obtain within the corresponding phase space evolution according to the Vlasov equation the values of the critical exponents describing power
Thermodynamic properties of an ultracold Fermi gas in a harmonic trap are calculated within a local density approximation, using a conserving many-body formalism for the BCS to BEC crossover problem, which has been developed by Haussmann et al. [Phys
We consider an ideal Bose gas contained in a cylinder in three spatial dimensions, subjected to a uniform gravitational field. It has been claimed by some authors that there is discrepancy between the semi-classical and quantum calculations in the th
We apply the Kovacs experimental protocol to classical and quantum p-spin models. We show that these models have memory effects as those observed experimentally in super-cooled polymer melts. We discuss our results in connection to other classical mo