ترغب بنشر مسار تعليمي؟ اضغط هنا

An anomalous alloy: Y_x Si_{1-x}

61   0   0.0 ( 0 )
 نشر من قبل Valeria Meregalli
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study via density functional-based molecular dynamics the structural and dynamical properties of the rare earth silicon amorphous alloy Y_xSi_{1-x} for x=0.093 and x=0.156. The Si network forms cavities in which a Y^{3+} cation is entrapped. Its electrons are transferred to the Si network and are located in the dangling bonds of the Si atoms that line the Y cavities. This leads to the presence of low coordinated Si atoms that can be described as monovalent or divalent anions. For x=0.156, the cavities touch each other and share Si atoms that have two dangling bonds. The vibrational spectrum is similar to that of amorphous Si. However, doping induces a shoulder at 70 cm^{-1} and a pronounced peak at 180 cm^{-1} due to low coordinated Si.



قيم البحث

اقرأ أيضاً

Electronic structure of zinc blende AlN(1-x)$Px alloy has been calculated from first principles. Structural optimisation has been performed within the framework of LDA and the band-gaps calculated with the modified Becke-Jonson (MBJLDA) method. Two a pproaches have been examined: the virtual crystal approximation (VCA) and the supercell-based calculations (SC). The composition dependence of the lattice parameter obtained from the SC obeys Vegards law whereas the volume optimisation in the VCA leads to an anomalous bowing of the lattice constant. A strong correlation between the band-gaps and the structural parameter in the VCA method has been observed. On the other hand, in the SC method the supercell size and atoms arrangement (clustered vs. uniform) appear to have a great influence on the computed band-gaps. In particular, an anomalously big band-gap bowing has been found in the case of a clustered configuration with relaxed geometry. Based on the performed tests and obtained results some general features of MBJLDA are discussed and its performance for similar systems predicted.
A detailed study of the magnetic and transport properties of Si1-xMnx (X = 0.35) films is presented. We observe the anomalous Hall effect (AHE) in these films up to room temperature. The results of the magnetic measurements and the AHE data are consi stent and demonstrate the existence of long-range ferromagnetic (FM) order in the systems under study. A correlation of the AHE and the magnetic properties of Si1-xMnx (X = 0.35) films with their conductivity and substrate type is shown. A theoretical model based on the idea of a two-phase magnetic material, in which molecular clusters with localized magnetic moments are embedded in the matrix of a weak itinerant ferromagnet, is discussed. The long-range ferromagnetic order at high temperatures is mainly due to the Stoner enhancement of the exchange coupling between clusters through thermal spin fluctuations (paramagnons) in the matrix. Theoretical predictions and experimental data are in good qualitative agreement.
Ge_(1-x)Sn_x alloys have proved difficult to form at large x, contrary to what happens with other group IV semiconductor combinations. However, at low x they are typical examples of well-behaved substitutional compounds, which is desirable for harnes sing the electronic properties of narrow band semiconductors. In this paper, we propose the appearance of another kind of single-site defect ($beta-Sn$), consisting of a single Sn atom in the center of a Ge divacancy, that may account for these facts. Accordingly, we examine the electronic and structural properties of these alloys by performing extensive numerical ab-initio calculations around local defects. The results show that the environment of the $beta$ defect relaxes towards a cubic octahedral configuration, facilitating the nucleation of metallic white tin and its segregation, as found in amorphous samples. Using the information stemming from these local defect calculations, we built a simple statistical model to investigate at which concentration these $beta$ defects can be formed in thermal equilibrium. These results agree remarkably well with experimental findings, concerning the critical concentration above which the homogeneous alloys cannot be formed at room temperature. Our model also predicts the observed fact that at lower temperature the critical concentration increases. We also performed single site effective-field calculations of the electronic structure, which further support our hypothesis.
We present the studies of structural, electrical, and magnetic properties of bulk Cd$_{1textrm{-}x}$Mn$_{x}$GeAs$_{2}$ crystals with low Mn content, $x$, varying from 0 to 0.037. The studied samples have excellent crystallographic quality indicated b y the presence of diffraction patterns never before observed experimentally for this compound. The electrical transport in our samples is dominated by thermal activation of conducting holes from the impurity states to the valence band with activation energy of about 200$;$meV. The defect states acting as ionic scattering centers with concentration in the range from 6 to 15$times$10$^{17}$$;$cm$^{-3}$ are observed. The effective Mn content in our samples, $bar{x}_{theta}$, determined from fit of the susceptibility data to the Curie-Weiss law, is very close to the average chemical content, $x$. It indicates that the Mn ions are distributed randomly, substituting the Cd sites in the host CdGeAs$_{2}$ lattice. We observe a negative Curie-Weiss temperature, $|theta|$$,$$leq$$,$3.1$;$K, increasing as a function of $x$. This indicates the significance of the short-range interactions between the Mn ions.
The Fermi and Rashba energies of surface states in the Bi_xPb_{1-x}/Ag(111) alloy can be tuned simultaneously by changing the composition parameter x. We report on unconventional Fermi surface spin textures observed by spin and angle-resolved photoem ission spectroscopy {that are correlated with a topological transition of the Fermi surface occurring at x=0.5. We show that the surface states remain fully spin polarized upon alloying and that the spin polarization vectors are approximately tangential to the constant energy contours. We discuss the implications of the topological transition for the transport of spin.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا